TiO$_2$ 21 nm nanoparticles as a photocatalytic antimicrobial agent against Escherichia coli, Candida albicans and Methicillin resistant Staphylococcus aureus: A comparison

Senarathna ULNH1, Fernando SSN1, Gunasekara TDCP1, Weerasekera MM1, Wickrama WDSA1, Perera MKR1, Arachchi NDH2, Jayaweera PM2

1Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura
2Department of Chemistry, University of Sri Jayewardenepura

Objectives: To determine and compare the antimicrobial activity of 21 nm TiO$_2$ nanoparticles against *Escherichia coli*, *Candida albicans* and Methicillin resistant *Staphylococcus aureus* (MRSA).

Methods: Titanium dioxide (TiO$_2$) 21 nm anatase nanoparticles (13.9 g/l) were suspended in miliQ (MQ) water, sonicated (35 MHz for 1 hour) and autoclaved. Sterile glass petriplates were treated with TiO$_2$ suspension or sterile MQ(control). Overnight cultures of *E.coli* MRSA and *C. albicans* were added to TiO$_2$ coated plates and control plates and kept at room temperature. Viable counts were obtained by spread plate method at 0 hours and 24 hours; before and after sunlight exposure for 30 minutes. Colony forming units (CFU)/ml was calculated to determine percentage reduction of CFU in presence of TiO$_2$. Experiments were done in triplicates.

Results: TiO$_2$ nanoparticles demonstrated antimicrobial activity against *E.coli*, MRSA and *C. albicans*. Estimated percentage CFU reduction in *E.coli* (13±8.4), MRSA (12±6.6) and *C. albicans* (36±4.9) was observed at 0 hours of contact in the supernatant. The bactericidal effect was enhanced on exposure of the plates to sunlight. Estimated percentage CFU reductions are *E. coli* (46±7.9), MRSA (99±0.2) and *C. albicans* (99±0.4). The results for 24 hours were (95±1), (35±2.1) and (83±4) reduction for *E. coli*, MRSA and *C. albicans* respectively. When the 24 hour plates were exposed to sunlight (99±0.6), (99±0.6) and (99±0.2) reduction was seen for *E. coli*, MRSA and *C. albicans* respectively.

Conclusion: Anatase 21 nm TiO$_2$ nanoparticles show enhanced antimicrobial activity against the tested microbial strains following photoactivation by sunlight. Antimicrobial activity against three different types of microbial strains has varying effects.