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Abstract: 

Global biodiversity is under threat due to increasing anthropogenic activities. Pressure on biodiversity 

is immense especially in rapidly developing countries like India.  In the present study, an attempt has 

been made to establish accurate relationships between Hyperion (EO1) reflectance spectra and 
measured β diversity index and Simpson’s index of the tropical moist deciduous forest of the study 

area. Developed accurate models can help in mapping and assessment of diversity at larger spatial 
scales. The efficiency of statistical modeling techniques including Partial Least Square (PLS) 

regression and Multiple Linear Regression (MLR), is demonstrated in this study (with maximum R2 of 

0.74 and 0.73 for PLS and MLR respectively). A vegetation index (SR 1457/933) is introduced for β 
diversity estimation, yielding exceptional accuracy in model development and validation (with a 

maximum R2 of 0.63). 
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1. Introduction 

The biodiversity of tropical forests is severely affected due to increasing levels of 

anthropogenic activities. Bellard et al., (2012) reported that global biodiversity is in decline, and this 
pattern is forecasted to remain so within the near future. Tropical ecosystems are very affluent in terms 

of species diversity. Therefore, it becomes extremely important to understand spatial patterns of 
species diversity in tropical ecosystems (Nagendra and Gadgil, 1999; Sanchez-Azofeifa et al., 2003; 

Loarie et al., 2007).  Tropical dry deciduous forests are noted for their numerous uses. They are rich 

repositories of medicinal plants used as raw materials in the industry and mostly harvested from the 
forests (Ravikumara et al., 2022). Tropical forests, with their vast diversity, represent an ideal proving 

ground for the developments needed to make diversity mapping a reality (Asner and Martin, 2014). In 
the tropical country like India anthropogenic pressure on the biodiversity of tropical forests has 

increased swiftly in the last few decades due to rapid economic development along with population 

growth.  Therefore, sound assessment of biodiversity at larger spatial scales in the tropical forest cover 
of India has become a pressing need.  

 
Field-based biodiversity enumeration/estimates cover smaller regions of forest cover. 

Moreover, the execution of these studies for larger areas of forest cover is time-consuming, cost cost-

prohibitive. However, by combining information about the known habitat requirements of species with 
maps of land cover derived from satellite imagery, precise estimates of potential species ranges and 

patterns of species richness are possible (Turner et al., 2003). Remote sensing can play a particularly 
important role in helping to understand where species live and in providing measures of diversity 

such as species richness (Geller et al., 2017).  

 
Hyperspectral remote sensing data are capable of fairly accurate identification of different 

species (Nagendra, 2001; Carlson et al., 2007). Hyperspectral data is having an inherent ability to 
collect information at a high spectral resolution using a series of contiguous spectral bands, which can  
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be used to record information regarding tree species biodiversity. Variability in hyperspectral 
information can be useful for discriminating tree species in landscapes including tropical forests, 

despite the greater complexity of such environments (Cochrane, 2000; Clark et al., 2005). Many 

researchers used imaging spectrometer data successfully for various biodiversity aspects of tropical 
vegetation (Asner et al., 2005; Carlson et al., 2007; Oldeland et al., 2010; Lopatin et al., 2016). 

However, most of the earlier studies were implemented using airborne imaging spectrometers or 
microwave remote sensing data. Very few studies such as Kalacska et al., 2007 and Chambers et al., 

2009 were found to be performed on biodiversity aspect mapping using spaceborne hyperspectral data. 

Therefore, the proposed study sought to estimate biodiversity using spaceborne Hyperspectral data. 
The objective of the present study is completely apparent, that is development of the statistical models 

and indices for the estimation of β diversity index and Simpson’s index (SI) of the tropical deciduous 
forest using space-borne imaging spectrometer data. β diversity was selected as a biodiversity aspect 

for the present study because of its universal acceptance. Simpson’s index has low sensitivity to 

sample size (Magurran, 1988). Simpson's index is the sum of the squares of the proportions of the 
component species. Moreover, Legendre et al., (2005) emphasize that beta diversity is ‘‘a key concept 

for understanding the functioning of ecosystems, for the conservation of biodiversity, and for 
ecosystem management,’.  

 

2.  Materials and methods 

 

2.1 Study area  
 

The present study was carried out in Vansda National Park (VNP) (200 51'16"-210 21'22"N & 

730 20'30"-730 31'20" E) at Navsari District of Gujarat state in India. It contains a hilly terrain with 
hills of moderate altitudes from 110-360 m, an extension of the Sahyadri Range. VNP covers an area 

of 23.99 km2. It chiefly consists of moist deciduous tropical types of forest (Nirmal Kumar et al., 
2007).  Teak (Tectona grandis L.) and Bamboo (Dendrocalamus strictus Nees.) are the dominant 

species of the study area. Other tree species growing in the sanctuary include, Acacia catechu Willd., 

Terminalia arjuna (Roxb.) Wight & Arn., Butea monosperma (Lamk.), Holarrhena antidysenterica 
(R.) Br, Mitragyna parviflora (Korth.), Dalbergia latifolia (Roxb.), Anogeissus latifolia (Wall.), 

Bridelia retusa (L.), Albizia lebbeck (L.), Madhuca indica (Gmel.), Garuga pinnata(Roxb.), 
Pongamia pinnata (L.) and Ficus racemosa (L.). 

 

2.2 Hyperspectral image acquisition  
 

An archived Hyperion (EO1) image of the study area was obtained (Figure 1). At the time of 
data acquisition, cloud cover was <25%. Pre-processing of the acquired Hyperion EO1 image was 

carried out using ENVI 4.6 (Excelis, Boulder, CA, USA) software. Atmospheric correction was 

carried out using FLAASH software (an inbuilt module of ENVI 4.6). The image was geo-registered 
with WGS-84 Geodetic datum (root mean square error (RMSE) 0.1 pixel).  
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N↑ 

Figure 1: FCC (False color composite) Hyperion (EO1) EO11480452011014110KZ image subset of 

the study area  

 
2.3 Field data collection  

 

An extensive field survey was conducted in the study area for the identification of important 
vegetation covers of trees. Quadrats of 30 × 30 m size were laid down (Quadrat size coincides with 

spatial resolution of EO1, 30 m). Vegetations with low density of trees (<20 trees/quadrat), moderate 
densities of trees (20-40 trees/quadrat), and high density of trees (>40 trees/quadrat) were identified. 

Ground control points (GCPs) of quadrats marked in representative vegetation were covers taken and 

transferred to Hyperion images of the study area. GCPs were obtained with the help of Global 
Positioning System receiver made by Garmin® (accuracy ± 5 m). Quadrats marked for each 

vegetation cover will fall in a patch size of a 3×3 pixel window.  For each quadrat of β diversity, and 
Simpson’s index was calculated using equations 1 and 2. The heights of the trees were measured by 

using Ravi’s multimeter (indigenous equipment). The instrument works on the trigonometric principle. 

The diameter at breast height (DBH)of the trees was measured using a meter tape. 
 

Measurement of β diversity (Wilson and Shmida 1984): 

β = s/α-1 (1) 
 
Where s is the total number of species recorded in the study system, and α is the number of species 

found within the marked quadrate. 

50 km 

7.7 km 



12 
 

Measurement of Simpson’s index   (Verma et al., 2007) 

SI = 1-Σ (pi)2 (2) 
 

Where p is the prepositional abundance of the species. 

 
2.4 Data analysis  

 

The correlation coefficient (with the help of the SPSS v20 statistical analysis tool) was 

calculated between β diversity index, Simpson’s index, and reflectance value of Hyperion EO1 spectra 

at each wavelength. Wavelengths showing good correlation (Correlation coefficient ≥±0.40) were 
used to develop indices. Indices showing the best result for quantification were identified with the help 

of the above exercise. The coefficient of determination R2 was calculated for each regression analysis. 
Leave one out technique was used to validate results (Vyas and Krishnayya, 2014).  

 

Multiple linear regression (MLR) and partial least square (PLS) regression were used for the 
extraction of relevant information from Hyperion reflectance spectra.  In the present study, PLS 

regression analysis was tested to predict β diversity and Simpson’s index using hyperspectral 
reflectance spectra as the independent variable. Partial least square regression and MLR analysis were 

performed using Unscrambler X (CAMO Software AS, Oslo, Norway). 

 
2.5 Diversity map generation of the study area 

 
Indices developed for the measurement of β diversity and Simpson’s index was tested to 

develop a diversity indices map of the study area. Generated equations were transferred into the Band 

math tool of ENVI 4.6 for the production of the diversity map. Each wavelength of the indices was 
mapped to an input image band along with its mathematical expression. Output images reflect pixel-

level diversity values of the study area. 
 

3. Results 

 
3.1 Measured indices of biodiversity and Reflectance spectra 
 

Table 1. Measured biodiversity attributes of the study area 

 Parameter 

Tree density per 

quadrate  Species richness Beta diversity 

Simpson’s index 

Minimum 19 7 0.22 0.79 

Maximum 60 25 2.98 0.94 

Mean 35 18 1.35 0.84 

Standard Deviation ±13 ±6 ±0.93 ±0.05 

 

Altogether, 33 different tree species were identified from marked quadrates (n=21). Table 1 

shows the measured biodiversity attributes of the study area. Significant variation is evident in this data. 
Variation of vegetation covers under high, low, and moderate density levels is apparent in the 

photographs of the study site shown in Figure 2.  Figure 3 shows the reflectance spectra acquired from 
Hyperion (EO1) for three different vegetation covers (425 to 2385 nm). Reflectance spectra showed 

considerable variability throughout the entire electromagnetic spectrum.  
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Figure 2. The vegetation cover with hilly terrains of Vansda National Park. 

 

Figure 3. A Hyperion (EO1) reflectance spectra of three different vegetation covers HD (high density), 

MD (Moderate density), and LD (Low density). 

 
 

3.2 Correlation between reflectance spectra and measured indices of biodiversity 

 

Figure 4 (a.) and (b.) shows the correlation coefficient between calculated β diversity, 

Simpson’s index, and reflectance spectra of Hyperion (EO1). It is apparent that, many wavelengths 
across the various regions of the electromagnetic spectrum are significantly correlated (correlation 

coefficient >±0.40) with β diversity index and Simpson’s index.  
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Wavelengths 457 nm and 1457 nm showed a very high positive correlation with β diversity 
(0.64 and 0.69 respectively) whereas 933 nm showed a maximum negative correlation (-0.48). Other 

wavelengths such as 2375 nm (-0.40) also showed a significant correlation with β diversity. 

Wavelengths 732 nm and 2285 nm showed a very high positive correlation with Simpson’s index 
(0.60 and 0.56 respectively) whereas 457 nm showed maximum negative correlation (-0.44). Other 

wavelengths such as 2012 nm (-0.45) also showed a significant correlation with Simpson’s index.  
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

Figure 4: Correlation coefficients (a) between measured β diversity, and (b)Simpson’s Index 
along with Hyperion (EO1) reflectance spectra 
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3.3 Developed indices and regression models for measurement of β biodiversity 
 

  

 
 

  

 

Figure 5: Cross-validation showing R2 of prediction for developed models (β  diversity and Simpson’s 

index respectively). (a.) and (b.) PLS regression, R2 for developed model obtained was (0.74,0.71 Β 
diversity and Simpson’s index respectively), (c.) and (d.) SR 1457/933 and SR 457/2285. R2 for the 

developed model obtained was (0.63,0.51 respectively),  b.) MLR   R2 developed model obtained was 
(0.62,  0.73  respectively). 

 

As mentioned in paragraph 3.2 wavelengths having correlation coefficient ≥±0.40 were 
identified and used for the development of indices and development of regression models. Amongst all 

the developed indices Simple ratio (SR 1457/933) gave the best result for β diversity with R2 of 0.63 
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for model development and R2 of 0.60 for validation. MLR gave promising results when all four 
wavelengths (457, 1457, 933, 2375 nm) showing significant correlation were used to prepare the 

model for β diversity measurement (R2 of 0.62 for the development of the model and R2 of 0.58 for 

validation) (Figure 5). 
 

3.4 Developed indices and regression models for measurement of Simpson’s index 
 

Amongst all the developed indices Simple ratio (SR 457/2285) gave the best result for 

Simpson’s index with R2 of 0.51 for model development and R2 of 0.43 for validation (Figure 5). 
MLR gave promising results when all four wavelengths (457, 732, 2012, 2285 nm) showing 

significant correlation were used to develop a model for measurement of Simpson’s index (R2 of 0.73 
for the development and R2 0.60 for validation). 

 

 3.4 Partial least square regression  
 

Partial least square regression executed between measured biodiversity indices and Hyperion 
(EO1) reflectance spectra using different wavelength combinations (Visible 400-800 nm, NIR and FIR 

800-1300 nm, SWIR 1300 to 2400 nm). Amongst all other developed models, PLS regression models 

with visible wavelength range gave the best results. R2 of 0.74 and obtained for the developed PLS 
regression model of β diversity measurement (R2 of 0.69 for validation). Correspondingly, for 

Simpson’s index, PLS regression models with visible wavelength range gave the best results. R2 of 
0.71 was obtained for the developed PLS regression model (R2 of 0.60 for validation). 

 

3.5 Diversity map of the study area   

 
 

 
 

 

 

 

Figure 6: Biodiversity map of the study area (based on the Regression model developed for SR 
1457/933 for β diversity) 

 

A diversity map of the study area was prepared using the SR index developed for β diversity as 
it gave the highest accuracy for model development and validation.  The diversity map generated for 

the study area shows the appropriate distribution and pattern of β diversity (Figure 6). 
4. Discussion  

 

In the present study, the suitability of space-borne Hyperspectral data (Hyperion EO1) was 
examined for the measurement of β diversity and Simpson’s index of tropical deciduous forest.  The 

discussion on the findings of this study is as follows. 
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Measured species richness and β diversity values are comparable with the data collected from 
phytosociological studies of the same forest area by Kumar et al., (2013). Moreover, β diversity and 

Simpson’s index measures of the present study are also analogous with values obtained from various 

sites of tropical dry deciduous forests across India by Sagar et al., (2003); Nagendra, (2001); Roshni et 
al., (2022) and Lal et al., (2021). 

 
The outcome of the present study for the estimation of tree species β diversity and Simpson’s index is 

highly encouraging. Results obtained with all three statistical modeling techniques are very promising, 

as all of them were able to estimate the variance in β diversity index and Simpson’s index with 
comparatively better accuracy. Earlier, Laurin et al., (2016); Hernandez-Stefanoni et al., (2014) and 

Rahmanian et al., (2023) obtained comparable or lesser accurate results of tree species richness 
estimation using diverse remote sensing data (R2 0.62 to 0.64 and R2 0.39 to 0.49 and 0.57 

respectively). Ceballos et al., (2015) attained accuracy with R2 of 0.65 for the prediction of plant 

richness in a deciduous Chilean forest, using hyperspectral data. In addition, Simonson et al., (2012) 
concluded that diversity of forest species was significantly associated with Lidar-measured vegetation 

height with R2 of 0.50. Lopatin et al., (2016) found that Generalized Linear Models showed R2 of 0.66 
for total, tree, shrub, and herb richness with the help of Lidar data. Results of the present study are 

better than these studies, especially in terms of accuracy.   

 
Interestingly, there are a number of wavelengths identified that showed utmost correlation with 

β diversity and Simpson’s index (457, 933, 732, 1457, 2012, 2285, and 2375 nm). It is important to 
note that most of the wavelengths are biochemically very distinct. Reflectance at 433 nm is affected by 

variation in pigmentation (especially chlorophyll content). Whereas reflectance around 933 nm is 
affected by canopy water content (Vyas and Krishnayya, 2014).  Cho and Skidmore (2006) found that 

732 nm of NIR wavebands is sensitive towards variation in Nitrogen content. Reflectance in the range 

of 1457 nm changes with Nitrogen content in canopy (Carlson et al, 2007). Variation in reflectance at 
2385 nm may be attributed to the change in Nitrogen content (Ustin et al., 2002). Moreover, Chrysafis 

et al., 2020 also concluded that a similar wavelength range is useful for modeling species richness 
using hyperspectral remote sensing. 

 

Thus, it is evident that variation in biochemical parameters such as pigmentation, nitrogen, and 
water content in the canopy of different tree species creates adequate variation in reflectance patterns 

around specified wavelength regions. In the present study, these apparent variations helped a lot in the 
accurate estimation of β diversity index and Simpson’s index. Similarly, Jetz et al., (2016) concluded 

that the ecosystem processes and variations in the plant's chemical, physiological, and structural 

properties are often directly linked to the functional biodiversity of plants. Earlier, Asner and Martin 
(2014) found that as species richness increases, the variability of N and N + P also increases non-

linearly. In the present study, species richness measured for the study area is associated with both the 
biodiversity index calculated (Table 1). Asner and Martin (2014) also stated that there is a sufficient 

theoretical basis to link the spectral, chemical, and taxonomic diversity of tropical tree species. Results 

of the present study are comparable with Jetz et al., (2016) and Asner and Martin (2014). 
 

Earlier, Vyas et al., (2013) found that reflectance at 1457 nm was responsive towards change 
in Leaf area Index (LAI).  Costanza et al., (2007) concluded that biodiversity and Net Primary 

Productivity (NPP was measured as a function of Leaf Area Index) are intricately linked in complex 

ecosystems. This association between both attributes may be the reason behind the sensitivity of 
wavelength 1457 nm towards change in β diversity index.  

 
Partial least square regression analysis using visible region of reflectance spectra obtained very 

accurate results for the estimation of β diversity and Simpson’s index.  The partial least square 

regression technique was found to be very useful in exploiting information in the reflectance spectra of 
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visible regions. Earlier, Vyas et al., (2012) and Asner and Martin (2008) found that visible region can 
be used for accurate estimation of chlorophyll content using PLS regression. Therefore, the effect of 

variation in chlorophyll content is evident in the results of PLS regression analysis of β diversity. 

Moreover, In the present study variations in species richness along moderate, low, and high dense 
regions of the study area were observed. Earlier, Vila et al., (2007) concluded that wood production 

increased with tree species richness. Therefore, one can say that biomass content variation in the study 
area also creates sufficient sensitivity towards visible-NIR region (Vyas and Krishnayya, 2014). This 

facilitated to provide of better results for the estimation of both the biodiversity indices in PLS 

regression. 
 

After the cautious comparison of the FCC image and β diversity Map of the study area, it is 
evident that region containing moderate or high biodiversity is situated around the water bodies as 

well as on the slopes of elevated regions. Less human disturbance due to elevation and high humidity 

in soil due to water bodies in the vicinity may have played an important role in sustaining the growth 
of a range of tree species in the study area. 

  
5. Conclusion: 

 

The present study has been able to identify regions as well as wavelengths that are sensitive 
towards the variation in β diversity and Simpson’s index in moist tropical deciduous forests of the 

study area. The present study was also able to establish an accurate relationship between Hyperion 
(EO1) reflectance spectra and β diversity and Simpson’s index with the help of three different 

statistical techniques. In the future, above-identified wavelengths would also be extremely important 

for the development of new space-borne platforms for the assessment of global biodiversity. 
Moreover, the importance of PLS regression analysis was re-established in the present study for the 

estimation of attributes in complex ecosystems. The diversity map developed in the present study will 
be useful for Government agencies such as the Forest Department for the proper management and 

conservation of forest ecosystems in Vansada National Park, Gujarat. Similar diversity maps can also 

be developed for the various regions of the tropical deciduous forests. 
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