4. advances Adv. Technol. 2022, 2(3), 291-321
¥ in Technology

Full Paper

A Novel Method for Moving Laterally and Discovering
Malicious Lateral Movements in Windows Operating Systems:
A Case Study

Kyle T. Rozendaal® and Akalanka B. Mailewa®*

aDepartment of Information Assurance, College of Business, St. Cloud State University, Minnesota 56301, USA
bDepartment of Computer Science & Information Technology, St. Cloud State University, St. Cloud, Minnesota 56301, USA

E-mail correspondence: amailewa@stcloudstate.edu (A. B. Mailewa)

Received: 15 March 2022; Revised:14 June 2022; Accepted: 18 June 2022; Published: 25 August 2022

Abstract

Lateral movement is a pervasive threat because modern networked systems that provide access to multiple users are
far more efficient than their non-networked counterparts. It is a well-known attack methodology with extensive
research conducted investigating the prevention of lateral movement in enterprise systems. However, attackers use
increasingly sophisticated methods to move laterally that bypass typical detection systems. This research
comprehensively reviews the problems in lateral movement detection and outlines common defenses to protect
modern systems from lateral movement attacks. A literature review outlines techniques for automatic detection of
malicious lateral movement, explaining common attack methods utilized by advanced persistent threats and
components built into the Windows operating system that can assist with discovering malicious lateral movement.
Finally, a novel approach for moving laterally designed by other security researchers is reviewed and studied, an
original process for detecting this method of lateral movement is proposed, and the application of the detection
methodology is also expanded.

Keywords: Lateral-movements, Cyber-attacks, Confidentiality, Security, Phishing, Threats, ShadowMove

Introduction

Lateral movement is a technique outlined in the MITRE ATT&CK framework and is a major problem in
enterprise networks during cyber-attacks [1]. Lateral movement takes place after attackers gain a foothold
in a network. Attackers use a combination of built-in programs, malware, remote procedure calls, and user-
agent manipulation to move between workstations and servers closer to the target system containing the
data they wish to manipulate for personal benefit. Many researchers focus on earlier phases of the attack
chain because once lateral movement has begun, the attackers have already breached the perimeter, making
it extremely difficult to contain the damage. Phishing is vital in explaining why detecting and preventing
lateral movement is essential. According to phishlabs.com and the 2019 DBIR by Verizon, Phishing attacks
were a crucial component in 32% of all successful data breaches [2][3]. Typically, when a phishing attack is
successful, there is a loss in the confidentiality of the user account and password, or malware is downloaded
into the network giving attackers remote access to the Windows environment. A successful phish can
bypass multiple steps on the ATT&CK framework [1] if a high-level administrator reveals their username

and password information. Likewise, even compromising the integrity of a standard user could bypass a

https:/ /doi.org/10.31357/ ait.v2i3.5584

https://doi.org/10.31357/ait.v2i3.5584
mailto:amailewa@stcloudstate.edu

Adv. Technol. 2022, 2(3), 291-321

few steps on the ATT&CK framework and allow access to attackers to systems allowing them to build
persistence within the network from which to launch privilege escalation attacks against internal
vulnerabilities. Since users are one of the weakest links in network security and a successful phish can
bypass numerous defensive measures, research into detecting and preventing lateral movement is
important in cyber-security and threat intelligence. Lateral movement has been challenging to detect in the
past since the ability to move laterally between systems is a crucial component in networked Windows
environments. Many technical users need access to multiple systems throughout the day; protocols like
remote desktop protocol (RDP) and Secure Shell (SSH) are important business tools to help companies
achieve their goals. However, the same tools and methods users need also allow attackers to move between
computers and get into critical systems from which they can exfiltrate their target data. A key example of
how lateral movement is an issue for businesses occurred in 2013 when Target experienced one of the
largest data breaches of the decade. Target contracted an HVAC company to run HVAC units that could be
remote controlled to save on heating and cooling costs during off-hours. These HVAC systems had remote
capabilities so managers could adjust store temperatures and control costs. The attacker’ s first entry into
Target’ s computer systems was through weak security protocols on these remote HVAC systems.
Attackers then used lateral movement techniques to move into the point-of-sale terminal systems and

exfiltrate nearly 40 million customers’ credit card information, costing Target nearly $300 million [4][5].

The Nature & Significance of the Problem

Lateral movement is a pervasive threat during cyber-attacks and often closely resembles legitimate traffic
[6]. Attackers take advantage of the difficult nature of detection to move laterally through systems
unnoticed. Modern detection currently relies on tried-and-true methods that detect standard lateral
movement techniques, but new attack vectors are being developed, and modern systems need a refresh to

keep up with novel attack patterns.

Lateral Movement is a major problem in security breaches

As previously stated, lateral movement is executed during almost every cyber-attack. In a large production
environment, it is improbable that a server hosting sensitive data like credit card information, medical
records, or banking information would be open to the public internet. Therefore, if attackers want access to
sensitive information, the initial point-of-compromise will be any public-facing machine they can find.
Once attackers gain access to a device, they will use the tools at their disposal to move from system to
system until they get to the data, they are attempting to exfiltrate. Since lateral movement occurs in every

large data breach, it is a significant problem to study.

Lateral Movement is Preventable
Lateral movement is entirely preventable. By locking down firewall rules and disabling protocols, lateral

movement attacks would be impossible to execute by creating a series of systems that have no
interconnectivity. However, preventing attackers from moving laterally also prevents legitimate users from
moving laterally. Networked computers, systems, and a series of machines working in tandem with shared
access make a business more profitable and efficient. It is understood that a computer connected to the
internet is vastly superior in its capabilities to a computer without an internet connection. Likewise, a non-

networked workstation in business environments would be significantly less powerful and productive than

292

Adv. Technol. 2022, 2(3), 291-321

a workstation connected to the business network with access to all the business data. Due to the complexity
of business systems in a networked world, shutting down methods to move laterally is impossible.
Businesses rely on networked machines and servers to carry out business goals. MITRE supplies a list of
controls that can be used to prevent some of the main types of lateral movement techniques. When
implementing controls, there is a balance between system usability and security. Administrators must
decide where this balance is between secure and useful. Since networked systems are the key to many
business practices, differentiating between normal user movement through a networked system and
malicious movement in an enterprise network is extremely important in supporting the security of data
systems. Since remote access to networked computers is vital to business function, detection and

prevention of unauthorized access are as important as the business functions.

Lateral Movement is difficult to detect
Attackers use numerous methods for moving laterally through networks [7]. Many of these methods

require the attackers to capture password hashes and user credentials to move onto the next system. When
attackers move this way, it simply appears that a named user is moving from one system to the next. This,
in turn, means that attackers typically masquerade as many different users during a campaign, and all the
lateral movement is masked to appear as though authenticated and authorized users are conducting
legitimate business. However, some indicators of lateral movement show that illegitimate lateral
movement is taking place rather than authorized remote work. Researchers have zeroed in on some of these
digital artifacts created during a malicious lateral movement campaign and designed their methodologies

for detecting these slight differences.

Objective of the Study
The study aims to supply a broad overview of lateral movement techniques and defenses. First, online

sources and libraries like MITRE have troves of information concerning the practical application of lateral
movement prevention and the methods protected against it. Second, a literature review covers proposed
methods for improved lateral movement detection in enterprise systems. Finally, this study will
demonstrate a novel method presented in one of the research papers, explain how it functions to bypass
detection, and create a detection method to detect this stealthy lateral movement. This feat has not yet been
completed.

Research Questions

a. Traffic Differentiation
With standard attack methodologies, how can an analyst differentiate between legitimate and non-

legitimate traffic when legitimate traffic looks just like malicious traffic?

b. Network Complexity
With the increase in network complexity and the ever-increasing scope of networks, what defense measures
have been proposed to assist analysts with detecting and preventing malicious traffic?

c. Novel Techniques
With the increasing complexity in detection evasion employed by attackers, is it possible to detect novel

lateral movement techniques that have not yet been detected?

293

Adv. Technol. 2022, 2(3), 291-321

Limitations of the Study

Since lateral movement is a well-known and well-documented attack methodology, there is a significant
amount of documentation outlining the methods and defenses found in research papers, blogs, and
software vendor websites. However, one of the key features of lateral movement that makes it so difficult
to detect is that for every individual malicious authentication that indicates malicious lateral movement,
there are likely thousands of non-malicious authentications that indicate normal network traffic. Therefore,
the process of log management and filtering out millions of unimportant events is as important a feature
of lateral movement detection as is knowing the threat vectors available to attackers. Since this research
was not conducted in an enterprise environment and simulating such an environment is costly, this element
of the research was simulated to a small extent and would benefit from being run in an enterprise

environment to prove its efficacy in production environments.

Definition of Terms

e Dynamic Link Library: A Dynamic-Link Library (DLL) is a library that contains code and data that
can be used by multiple programs at the same time [8].

e Server Message Block: Server Message Block (SMB) is a network communication transfer protocol
to provide shared access to files, printers, and ports between the networks [9].

e Remote Desktop Protocol: The Microsoft Remote Desktop Protocol (RDP) provides remote display
and input capabilities over network connections for Windows-based applications running on a
server. RDP is designed to support different types of network topologies and multiple LAN
protocols [10].

e Windows Driver Development Kit: The Windows Driver Kit (WDK) provides a set of tools that
you can use to develop, analyze, build, install, and test your driver [11].

e ShadowMove: ShadowMove is a modern stealthy lateral movement technique designed by
students and faculty at the University of Illinois at Springfield, The University of North Carolina
at Charlotte, and Louisiana State University. The code utilizes DLLs to execute lateral movement
without being detected by traditional antivirus and without creating new authenticated sessions.
The proof-of-concept code provided for this research was built as PoC.exe, and this executable

name will be used synonymously with ShadowMove throughout the remainder of the research
paper [12].

Lateral movement is the main problem that cannot be completely solved without vastly reducing business
functionality. Methods used by attackers to move laterally are well documented, and prevention methods
are readily available and accessible. However, lateral movement is also complicated to detect as it typically
appears to legitimate user authentications. The objective of this study is to provide a literature review on
research that outlines methods for differentiating between legitimate and malicious movement between
computer systems, to highlight methods that have been proposed to prevent malicious lateral movement
methodologies as well as the methodologies these prevention techniques aim to solve, and finally, to study
a novel intrusion detection method and provide an original solution to detecting the method.

294

Adv. Technol. 2022, 2(3), 291-321

Background and Review of Literature

This literature review aims to provide the reader with a deeper understanding of the work conducted in
lateral movement detection attempting to solve some of the major problems that exist in differentiating
malicious traffic from regular traffic. This chapter will be divided into four sections; the first, another short
outline of the nature of the problem; second, a review of literature related to the problem; third, a review
of literature related to the methodology; and finally, a summary of the research done in preparation for the

original study.

When approaching the problem of lateral movement, two primary questions are posited; how do we
differentiate between malicious and benign traffic, and how do we stop malicious lateral movement?
Differentiation and prevention of known techniques are the two areas in the background portion of this
literature review. Since methods for lateral movement are well known and documented, this literature
review begins with a review of the MITRE ATT&CK Framework. An overview of each method used for
malicious lateral movement and proposed defenses are covered. A diagram outlining common tactics to
prevent lateral movement is provided in Appendix A for engineers looking for easy solutions to cover most
attack methods. A literature review proposing new detection types for more precise differentiation and
remediation is provided following the MITRE review. MITRE outlines numerous attack methodologies for
lateral movement in their ATT&CK framework. This section discusses all methods described and their
recommended mitigation methods for fixing the vulnerabilities. The purpose of this section is to highlight
common methodologies employed by attackers when moving through a Windows environment. The
methods covered by MITRE are common exploits with well-known mitigations. In writing this section, this
research aims to highlight that while extremely common in cyber-attacks, common mitigations using built-

in protocols exist for every modern-day security practitioner.

Exploitation of Remote Services

Attackers exploit remote services to gain an initial foothold in the network but can also be used once inside
the network to move between systems. A common example of remote service exploitation is outlined in
CVE-2017-0143 or “Eternal Blue” . Eternal Blue is a vulnerability known by the NSA and released to the
public once the NSA discovered that attackers were using the exploit maliciously in other environments
around the world. Eternal blue uses a vulnerability inside Windows SMB and allows a remote attacker with
no credentials to gain SYSTEM level privileges on the target machine.[13]. Common mitigation techniques
outlined for this type of attack include sandboxing applications to discover vulnerabilities, uninstalling
unneeded or unused services from all systems, installing exploit protection software that can stop an
exploit when found, implementing a strong network segmentation policy, minimizing the permissions and
access of all accounts through a privileged access management project, improving employee knowledge of
threats and attacks through training, update all software to the latest and most secure versions, and
frequently scanning the network for vulnerabilities with updated databases to ensure all vulnerabilities are

patched as they become known.

295

Adv. Technol. 2022, 2(3), 291-321

Internal Spear Phishing

Internal spear phishing is when an attacker compromises an internal email address and uses it to gain the
trust of other internal users to trick them into sharing passwords or other sensitive data. For example,
attackers may create phishing campaigns with credential harvester pages or phish for information by
emailing colleagues using a trusted address to gain information. Mitigating internal spear phishing attacks
is extremely difficult as an initial breach has already occurred, and all attack traffic looks like standard
email traffic. Employee awareness programs and training will help reveal internal spear phishing

campaigns, but fully mitigating them is impossible without interrupting business systems.

Lateral Tool Transfer

Once inside a system, attackers will transfer tools from one system to another by exploiting administrative
accounts, opening SMB file servers, network drives, or removable media. By transferring attack tools to
other systems, attackers can connect to and create a backdoor on whatever system they place it on, giving
them more profound persistence in the network. Common mitigations for this attack include filtering
network traffic to ensure that only known devices and addresses communicate with secure channels like
SMB or SSH. Another method for preventing lateral tool transfer is implementing a network intrusion
prevention system. By implementing a signature-based or anomaly-based intrusion-prevention system,

irregular traffic or file transfers may be detected and prevented.

Remote Service Hijacking

Attackers sometimes can hijack pre-existing network connections using services like SSH and RDP.
Attackers may commandeer these sessions to act against remote systems like transferring files or executing
commands. Detecting service hijacking is difficult since the authorized user creates the initial session, and
the malicious actor does not create a new session. Likewise, mitigation is difficult as it relies on disabling
features and services when unneeded, implementing a strongly segmented network, managing privileged
accounts, and managing user accounts. Ensuring only accounts with the need to access the service can
access the service will reduce the remote connection footprint and make it more difficult for the attacker to
hijack a connection. ShadowMove uses a novel method for hijacking unencrypted sessions between

computers on any port. This will be covered more extensively in section five.

Remote Services

Attackers will use compromised accounts to use services like RDP, SMB, SSH, and VNC to connect to
remote computers. There are numerous ways for attackers to gain valid credentials on remote connection
applications, including hash dumps, passwords left on files, brute force guessing, and many others.
Mitigation of this threat vector includes implementing multi-factor authentication where possible and
managing user accounts to ensure only the users that need access to the remote services are allowed to

access the remote services.
Replication through Remote Services

To bypass air gaps or to increase the likelihood of reaching difficult-to-reach machines, attackers may copy

malware to removable media in the hopes that it is inserted into another machine where they will have

296

Adv. Technol. 2022, 2(3), 291-321

access to more sensitive data. Mitigations include disabling autorun as attackers have used the autorun
feature to execute malware automatically when a user inserts the removable media device into a new
computer. Likewise, limiting USB storage devices on networked computers will make it nearly impossible

for removable media to be used as an attack vector.

Software Deployment Tools

Attackers may gain persistence on any number of machines by accessing applications that deploy software
across a network. By compromising an account on Microsoft’ s System Center Configuration Manager or
McAfee E-Policy Orchestrator, attackers can gain the ability to deploy any software to any system within
the network. Depending on how the software deployment tool is configured, it may be possible for
standard network accounts to have sufficient permissions to deploy applications anywhere in the network.
Mitigating this attack vector is accomplished by ensuring systems are isolated correctly in the active
directory, ensuring multi-factor authentication is in place for critical systems, segmenting the network to
keep critical systems isolated from less secure systems, enforcing a strong password policy, managing
privileged accounts with a Privileged Account Management procedure or tool, ensure that tools with the
ability to deploy software are configured so that only signed binaries or specific binaries can be deployed,
update systems to ensure patches are installed when they are needed, manage user accounts to ensure over
permissioned accounts are not present in the environment, and ensure that users are trained in the policy
and procedures for deploying software to remote systems. Each company and environment will have a
different level of access needed to install applications on systems remotely, so mitigating a threat like this
can be difficult. Some companies will also have custom software that they may want to push, which may
be unsigned. Companies should ensure that if they are going to use a remote deployment tool, which tool

fits all the needs for the types of software they will be distributing.

Taint Shared Content

Attackers may be able to move laterally by adding malicious files to shared locations on the network. These
tainted items will typically contain instructions that allow the attacker to move laterally once an unknowing
user executes them. Attackers often design these files so that the user's intended action is still executed so
as not to raise suspicion. However, the malicious script will run and allow deeper network access.
Mitigating shared content includes using an exploit prevention system, file and directory permissions for
users that have access, and to identify potentially malicious software with detection systems and
auditing/blocking the execution of such files with tools like Microsoft AppLocker or Software Restriction

Policies.

Use Alternate Authentication Material

Attackers also attempt to access alternative authentication materials like Kerberos Tickets, Application
Access Tokens, Authentication Tickets, or Web Session Cookies to bypass the password required to access
the service. For example, using meterpreter shells or programs like Mimi Katz to dump credentials or active
tickets and sessions, attackers can gain the ability to craft a token or ticket that the system will take in lieu
of a password. Mitigating these types of attacks includes privileged access management to reduce the

likelihood of lateral movement between systems and implementing a principle of least privilege within the

297

Adv. Technol. 2022, 2(3), 291-321

network to mitigate the number of administrative accounts on the network.

Liu et al. discussed the problem inherent in Lateral Movement detection by outlining two key issues when
differentiating lateral movement from normal use behaviors: detecting the path after discovering an
infected computer. Latte analyzed large-scale event logs collected from operational networks [14]. Their
system analyzed Kerberos service ticket requests to construct a graph outlining a general connection
structure between networked machines. For general detection purposes, Latte uses this connection graph
and data from Windows Event Logs to correlate rare connections in conjunction with Remote File Execution
to detect possible lateral movement within an environment. To prevent log tampering, Windows system
file logs are sent to the Windows Event Forwarding server and fed to MapReduce to create a complete
historical map of remote file executions and Kerberos service ticket requests. The work done by Liu et al.
stands out from other graph-based models in that it can be deployed to stock Windows installations as it
only utilizes logs gathered from standard installations of Windows and requires no kernel-level privileges
to operate as intended. Latte truly shines when trying to forensically analyze an attacker's path to and from
an infected node and highlights useful information for future analysts investigating potential lateral
movement attacks. By analyzing the known compromised node and filtering out the rarest results, analysts
are only required to make a limited number of manual investigations to find paths taken by the attacker.
In their experimentation, the forensic analysis module was able to successfully float the malicious paths
taken by the attacker to the top eleven results out of a possible 447,828 paths [14]. Given their method,
analysts need to manually analyze the eleven paths discovered by the forensic analysis module: a far more
manageable task than the 447,828 paths in the first dataset. Since analysts in the eleven top results
discovered the malicious paths taken between workstations, the researchers determined their forensic
analysis module to be successful. The authors admitted that for general detection, relying solely on the rare
node connections generates far too many false positives to be considered a practical source for actionable
insight in an environment. In each ninety days, over forty-four million connections were tied as the most
suspicious to generate fewer false positives, and the authors recommended first determining where remote
file execution occurs within a network and then correlating the rare connection paths inbound and
outbound from the system wherein remote file execution took place. This research, however, did not
propose a method for how analysts can differentiate between malicious and non-malicious traffic. By
correlating Kerberos Service Tickets with remote execution and analyzing rare paths using a network map,
it is possible to narrow down the possible malicious lateral movement events to a level where an analyst
can manually analyze each in a given workday.

Holt et al. researched the use of Deep Autoencoder Neural Networks in detecting lateral movement in
networked computers. They begin by outlining that many other researchers have studied using neural
networks to aid in detecting intrusions in computer networks. However, Holt et al. differentiate their
research from past research endeavors by setting out to solve the problem of lateral movement rather than
general intrusion detection. Holt et al. used the Los Alamos National Laboratory dataset to train and test
their neural network. The Los Alamos National Laboratory dataset covers 58 days and is over seventy-three
gigabytes in size. Therefore, Holt et al. used two subsets of data from the Los Alamos National Laboratory
dataset: a developmental dataset for use in training and proof-of-concept work and a test dataset to evaluate
the accuracy of their created models [15]. The developmental dataset included all the red team data from

the Los Alamos Dataset and all normal traffic from the computers compromised by the red team.

298

Adv. Technol. 2022, 2(3), 291-321

Researchers added a random data sampling to make the developmental set more varied and avoid
overfitting the data. Researchers created the test dataset similarly by adding all users from all compromised
computers to add more variance to the dataset. After describing how unsupervised autoencoders learn, the
authors describe four models they designed for testing. The first was a shallow model designed 6-2-6, the
second was a deep model designed 6-3-2-3-6, the third was a deep model designed 6-3-2-3-4-5-6, and the
fourth was designed 6-5-4-3-2-3-6 [15]. After feeding data to the neural network for testing, the results were
mixed. The first three models performed well with low false positive rates--.55%, .85%, and .95%--with
good recall, however, performed inaccurately in the precision metric. The fourth model had a false-positive
rate of over 20% and no measurable precision nor recall. The three models proposed by Holt et al.
performed worse than the semi-supervised model they reference in their related works section. However,
the semi-supervised model proposed by Siadati et al. [16] requires a human analyst to aid in the detection
of anomalies and is not fully automatic like the model proposed by Holt et al. Furthermore, the model
proposed by Holt et al. was more accurate than the model proposed by Bohara et al. [17]. While the results
show positive progress towards automating intrusion detection and lateral movement detection using
autoencoders, further research must be conducted to improve the detection rates and reduce the volume
of data necessary to train an autoencoder to perform intrusion detection. Intrusion detection using machine
learning is a critical area of research, and numerous researchers investigated the use of unsupervised and
semi-supervised machine learning approaches to aid in the filtering of data to a manageable level or to
work as IDS/IPS in the network [14][18][19][20][21]. Many semi-supervised models perform extremely well
when pairing the judgment of a human with the pattern recognition of a computer [22]. Methods
researched by teams like Holt et al. showed promise in automating tasks and reducing the amount of noise
while more accurately predicting abnormal user behavior as is presented during a malicious lateral
movement event.

Abdurrahman Pektas and Ertugrul Basaranoglu introduced a new method for conducting penetration tests
within a Windows Environment. They claimed that there has not been a structured attack method for
Windows penetration tests and set out to construct a new method that focuses specifically on attacking
Windows environments [23]. The authors began their article by outlining the basics behind other
penetration testing methodologies introduced by companies like OWASP and the CE-Council but quickly
started working on demonstrating why their Microsoft Domain Environment Penetration Test
Methodology is superior for testing Windows environments. The authors introduced a ten-step systematic
process for attacking Windows environments. They explained methodologies used throughout the
penetration test within each step to gain access, attain persistence, and compromise more systems. Section
three of the paper introduces numerous methods for attacking Windows environments and explains
methodologies that attackers use to breach a Windows environment successfully. The authors break down
their methodologies in the ten-step penetration test method. Section four covers mitigation techniques for
preventing unauthorized access to systems as laid out within section three. While comprehensive in scope,
the amount of detail in preventing specific methodologies is lacking. While this paper introduces a new
structure for attacking Windows environments and the mitigation is a minor portion of this attack
framework, a more comprehensive list of mitigation techniques for the numerous specific attack techniques
would have been helpful. The authors' concluding section outlined that since they provide more steps,
specific tools for attack and mitigation, and different techniques, their method competes with other attack

299

Adv. Technol. 2022, 2(3), 291-321

methodologies for conducting penetration tests. It is true that system administrators and security
professionals could use this framework to aid in penetration tests and securing their Windows
environments. However, for this starred paper, this resource helps outline novel methods for exploiting
Windows environments for lateral movement as well as potential measures to prevent lateral movement.
Many of these activities are also outlined in the MITRE ATT&CK Framework and will be covered in future
sections. This research helps develop a broader understanding of tools and techniques available to network
defenders and how malicious lateral movement may be defended against.

Bai et al. proposed a new method for classifying RDP sessions in Windows environments. Using datasets
from the Los Alamos National Laboratory and supervised machine learning algorithms, the authors
proposed a new method for detecting and sorting through RDP sessions to better classify malicious lateral
movement within a Windows environment. Bai et al. concluded their research by comparing their
developed method to state-of-the-art methods and gauging their effectiveness based on another model's
performance [24]. The authors began their research with a literature review of other authors that have tried
to classify malicious RDP sessions using the Los Alamos National Laboratory Dataset (LANL) machine
learning algorithms. Bai et al. critique Ussath et al.'s method [25] for being unwieldy in production
environments, although the learning algorithm was efficient at detecting malicious RDP sessions.
Furthermore, the authors critique Kaiafas et al. [26] for their proposed use of the LANL dataset and posture
that the LANL dataset is only useful for machine learning training when combining the two available
datasets rather than solely utilizing the comprehensive events dataset. Bai et al. level criticism at the LANL
dataset for its fractured nature. The comprehensive events dataset holds diverse red-team activities.
However, the ratio of red team activities to normal activities is extremely small. Furthermore, the red team
activities are launched from four machines and occur during specific timeframes.

For this reason, Bai et al. concluded that using the comprehensive dataset alone for training machine
learning algorithms will lead to overfitting or training the machine learning algorithm to detect specific
timeframes and machine ID rather than generalized patterns in the malicious RDP activities [24]. To solve
this problem of overfitting the training data to specific activities generated by specific machines at specific
time intervals, Bai et al. proposed combining two datasets from LANL to create a comprehensive dataset
that combines more user events from the Windows event log with the malicious red team data from the
comprehensive dataset to make a more generalized dataset to train machine learning algorithms and
bypass the issue of overfitting by using only one data source [24]. Using their new combined dataset, Bai
et al. test their training data on five different machine learning algorithm classifiers and determine their
performance by measuring their accuracy, precision, recall and F-Score: the "harmonic mean of precision
and recall" [24]. The authors then compared their model to another top-performing model proposed by
Kaiafas et al. [26]. Using their dataset, Bai et al. were able to reduce the number of inputs, abstract the data
more completely than Kaiafas et al., and return higher detection rates. In doing so, Bai et al. reported that
their model is more useful in a production environment as it requires fewer data to run and is as effective
as the more complex model [24]. This model helps highlight what Windows Event Log events can be used
in automated systems to detect malicious lateral movement in an environment and highlight the fact that
this task can be automated with sufficient training data. Understanding that Windows Event Logs can be
used in automated systems to assist with detecting malicious lateral movement is a critical point of this

research. Windows Event Logs are often overlooked as being clunky or not verbose enough. This research

300

Adv. Technol. 2022, 2(3), 291-321

proves that Windows Event Logs can be utilized effectively for intrusion detection when the correct filters
are applied, and careful logic is used. The machine learning algorithm proposed by Bai et al. demonstrated
novel methods for detecting and preventing lateral movement using common tools accessible to most
security analysts and engineers.

Hossein Siadati and Nasir Memon introduced a method for detecting anomalous logins and lateral
movement within an enterprise network by creating a “network login structure” that outlines typical
sign-ins for users and then employed an anomaly detection system to detect out-of-character logins for
users within the network [27]. Siadati and Memon focused on credential-based lateral movement during
which the attackers steal valid user credentials through tactics like pass the hash and authenticating as
valid users. These attacks are some of the most difficult to detect because they closely resemble normal
account authentications during an average workday. Siadati and Memon created a system that simply
looks for odd login behavior from users rather than specific attack methodologies. By focusing on a broader
scope, their method should be able to watch for a wider range of attack vectors. Siadati and Memon
employed a pattern miner and login classifier to collect as much data as possible about typical user behavior
in the network and classify whether the logins are considered benign or malicious, given the data mined
by the pattern miner. Siadati and Memon created an algorithm to classify typical user behavior based on
the login pattern, occurrence, orientation, patterns, and scores generated by all previously stated inputs
[27]. Once researchers completed their system, they evaluated their detection system against a dataset
holding five months of data from a global financial company. Once the test was run against the system, the
data was handed to a group of analysts from the company, and each flagged instance was investigated to
determine whether it was a true positive or not. The analysts, after analyzing the flagged sign-ins,
discovered that the system only had an 11% accuracy rating. This was because administrative logins tend
to look abnormal in many cases as administrators constantly access new machines for the first time, causing
the pattern miner to flag them as malicious given their infrequency. While monitoring standard behavior
for users and flagging anomalous logins is a good theory, in practice, more information must be considered
before flagging anomalous logins as malicious. For instance, taking process history from the user before
the connection was made or observing spawned processes after the connection was completed could help
narrow the scope and improve the system's overall accuracy. While some sign-in-based anomaly detection
system could help detect novel lateral movement techniques, further studies into this subject need to be
done before this type of detection can rely solely on malicious lateral movement detection. While not the
most effective solution, detecting lateral movement by tracing anomalous logins is a worthwhile endeavor
in a defense-in-depth structure. It is another method by which analysts and engineers may detect lateral
movement within the infrastructure.

Kaiafas et al. aimed to solve the problem with anomaly detection outlined in the paper by Siadati and
Memon: false-positive detections. Kaiafas et al. tried to solve this issue by providing more contextual data
surrounding the authentication of the classifiers [26]. By including more contextual data, they aim to reduce
the number of false positives by classifying what normal behavior looks like more accurately. Kaiafas et al.
used four different supervised anomaly detection systems in their research and tested their accuracy using
the Los Alamos National Laboratory Dataset. Since the Los Alamos National Laboratory Dataset has so few
malicious activities—less than .00033% of total authentication logs [26]—filtering the anomalous/malicious

traffic from standard user traffic is extremely difficult. To assist their supervised learning algorithms with

301

Adv. Technol. 2022, 2(3), 291-321

sorting malicious events from non-malicious events, the authors identified several features and included
tangible pieces of data to improve malicious anomaly detection. The first feature is the "distribution of time
difference of events between systems and from user to system" [26]. This feature captures the spread of
user activity over time, allowing the detection engine to estimate a relative pattern to user activity. The
second feature is "user activity and connection frequency"” [26]. The authors used this to estimate a general
pattern of typical user behavior on a given day. By observing the frequency of network activities, the
pattern recognition system can better find whether actions taken by a specific user account are outside the
normal range. The third feature is the "distribution of malicious events if we see every event as a trial" [26].
In their experimentation, Kaiafas et al. supplied a probability to the anomaly detection engine, which
outlines how likely a malicious event is. While this is helpful in an experimental system, when moving to
an enterprise network, this number will not always be known. The fourth feature is "user variance" [26].
This feature outlines the significance of a user during a given period and is designed to tell the system how
often a specific user should be expected to authenticate. It creates a distribution of both the number of users
authenticating during a period and the expected spread of user activity, meaning the more popular users
should be expected to authenticate more frequently during a given period.

After running the dataset through these classifiers, the authors fed the data to four different "ensemble
learning techniques" [26] for final classification. These ensemble learning techniques use multiple machine
learning algorithms to classify and sort data. They used LogitBoost, Random Forest, Logistic Regression,
and Majority Voting. After training their systems with a subset of data from the Los Alamos National
Laboratory Dataset, Kaiafas et al. measured the success of their systems by computing the false positive
rate, false negative rate, and balanced accuracy, which is "the arithmetic mean of True Positive Rate and
True Negative Rate" [26], Positive Predictive Value: a ratio of known malicious activities vs predicted
malicious activities, the F1-measure, and the Prevalence: or the ratio of True Positive and False Negative
over the sample size. After conducting their tests, most models performed well with low false positive rates,
with the Majority Voting system outperforming the others by a small margin. The systems achieved a 0%
false positive rate for 68% of the data and a .0019% false positive rate for the remaining 32%. The authors
conclude that completely avoiding false positives is a fool's errand, however, minimizing the number of
investigations made by human analysts is the goal of most semi-automated systems. Finally, Kaiafas et al.
proved that their sorting methods effectively reduce noise generated by the administrator. This research is
fundamental in feature choice for reducing the noise generated by network logs. Kaiafas et al. supplied
many features that reduce the false positive rate generated by network logs. The downside to this method
is that the ratio of benign authentications to malicious authentications is known. It would be interesting to
see how a system such as this would perform in a black-box environment.

Ussath et al. investigated twenty-two different APT attacks to gather the best practices used by many APT’s
to attack networks. In doing so, Ussath et al. proposed highlighting better detection methods for commonly
used attack structures [25]. To simplify the complexity of APT attacks, Ussath et al. viewed three main
categorizations of activities taken during an APT campaign: initial compromise, lateral movement, and
command and control [25]. After the first compromise, the authors explain the importance of lateral
movement in computer systems for all the APT groups. The most common method for moving laterally
through systems found by the authors is to use pre-installed Windows tools like remote desktop protocol,
windows management instrumentation, PowerShell, and PS Exec [25]. In addition, attackers often collected

302

Adv. Technol. 2022, 2(3), 291-321

passwords from memory using tools like Mimi Katz or Windows Credential Editor. Attackers rarely brute-
force passwords as brute force attacks are noisy and are typically prevented by administrators. The final
method outlined for lateral movement by Ussath et al. was to exploit known vulnerabilities to elevate
privileges. The authors proposed that attackers exploited vulnerabilities because access to passwords and
password hashes required administrative credentials [25]. To detect malicious lateral movement, Ussath et
al. proposed detecting known malicious processes like Mimi Katz for password and hash dumping
activities as well as monitoring the Local Security Authority Subsystem Service process, which has direct
access to the memory of other processes and is a vector of attack for dumping credentials [25]. Viewing the
chart of twenty-two different APT groups created by Ussath et al. provided a good snapshot into the
processes and attack methodologies used by APT groups. Understanding the methods used by APT groups
and common defenses against them helps with understanding how to detect and prevent attacks. The table
created by Ussath et al. is provided in Appendix A and outlines the most common methods used by APT

groups and provides a good overview of attacks to focus on defending against.

Literature Related to the Methodology

ShadowMove: A Stealthy Lateral Movement Strategy

Niakanlahiji et al. proposed a novel lateral movement strategy that uses built-in Windows features to jump
between systems using existing connections while bypassing all modern AV detection [12]. The system
works by duplicating socket connections and hijacking established FTP, TDS, and WinRM connections. The
system proposed by Niakanlahiji et al. used three main steps: Duplicate a socket used by a legitimate client,
inject packets into the TCP stream using the duplicated socket, and spawn a new session of ShadowMove
on the server handling the packets by tricking the server into executing the injected packets. This novel
method for lateral movement can avoid detection because it only reuses pre-established connections and
never spawns a new connection with the server, thereby not generating a new TGT or TGS request as is
typical in standard lateral movement attacks. The initial breach requires that a piece of malware be installed
on the initially infected vector. However, given the stage at which lateral movement takes place during a
cyber-attack, it is believable to assume that the attackers would have created a layer of persistence on the
systems and had a way to deliver a malicious payload to the client. The ShadowMove software has six
modules: Connection Detector, Socket Duplicator, Peer Handler, Network View Manager, Lateral
Movement Planner, and Plan Actuator. Each module has a specific purpose during the lateral movement
phase of a cyber-attack, and each serves a unique purpose in helping ShadowMove function as intended.
The Connection Detector is a listener that waits for a change in status from non-established to established
and records when a certain TCP port is used. This system constantly queries the TCP table on the Windows
machine to find when a vulnerable port has an established connection. The peer handler is used to share
data between instances of ShadowMove within a network. Using duplicated sockets, process suspension,
and previously compromised sockets, the peer handler can communicate with other ShadowMove
instances to share knowledge about the architecture of the network. The network view manager is a
dashboard from which the attacker can view the status of the network that has been compromised thus far.
The attacker can view hosts, sockets that have been duplicated, IP addresses, ports, service types, and other
valuable information the attacker may want to know when engaging in lateral movement as part of a cyber-

attack. The Socket duplicator duplicates sockets. This is done on a Windows system by using an open

303

Adv. Technol. 2022, 2(3), 291-321

process to enumerate all open handles. Then using “GetPeerName” it enumerates the socket from the
AFD handle. Finally, it uses “WSADuplicateSocket” to duplicate the socket, giving the attacker a tunnel
from which to inject packets into the data stream. Since these packets are injected into a data stream where
the benign application is running and transferring data, ShadowMove uses “SuspendThread” to pause
the execution of the benign service in order to ensure its own code is injected and executed. The lateral
movement planner gives the attacker the capability to view an exploit map and plan for the most efficient
lateral movement attack. Since permissions between systems vary in a Windows environment, not every
connection will have permissions to read, write, and execute on other systems. The lateral movement
planner shows the attacker the best route possible to a given target and can plan the most efficient route to
reach the desired system. Finally, the lateral movement actuator contains modules responsible for crafting
and reading from packets midstream and for crafting packets that can hijack FTP, MS SQL, and WinRM
connection streams. Niakanlahiji et al. created a stealthy lateral movement technique that bypassed all
traditional antivirus, endpoint detection and response tools and IDS/IPS tools leveraged against the
ShadowMove software. However, the authors outline a few key issues with their design. First, enabling
protected processes would stop ShadowMove from duplicating the process handle. Second, the
ShadowMove architecture only works on unencrypted channels: thereby limiting attack vectors to specific
protocols in a network. However, the novel method by which ShadowMove jumps from system to system
effectively bypasses antivirus and endpoint detection and response systems. This makes it a prime
candidate for attackers to improve on and make lateral movement attacks in less distinguishable ways. This
method will be expanded upon in sections 111, IV, and V, as this research aims to invent a novel method for
detecting this ShadowMove attack.

Detecting Adversary using Windows Digital Artifacts

Seng Pei Liew and Satoshi Ikeda proposed a method for detecting advanced persistent threat adversaries
in a Windows environment using nothing but native Windows artifacts [28]. The authors started by
outlining two key issues with detecting persistent adversaries in a Windows environment. The first issue
was that attackers use benign file names or files to conduct attacks to prevent signature detection. The
second was that disparate configurations within Windows environments and the lack of conformity to a
standard make tracing paths difficult. To overcome these issues, the authors proposed a machine learning-
based approach that observes digital artifacts left in all Windows systems. To do this, the authors also
proposed a new algorithm to learn the execution time of a process from the shipmate [28]. Using the data
gathered from the Shimcache and the output of the machine learning algorithm, the authors proposed an
adversary detection system that, given a period, would return a score representative of how malicious the
behavior taken during the given time period was. The authors outline their approach to detecting APT's
within an environment. By breaking down the attack pattern of APT's to component parts, the authors
outline the Windows commands that can be run during an attack.

Assuming a breach has occurred, the authors' outline commands typically run during the persistence,
discovery, privilege escalation, lateral movement, defense evasion, and exfiltration phases of an attack.
Given some of the most common commands used during an attack, the authors explain the digital artifacts
created by running the tools in the Master File Table, Shimcache, Prefetch, and Windows Event Log during
execution. The authors explained their methodology for tracing an attack using these event artifacts. They

304

Adv. Technol. 2022, 2(3), 291-321

outlined their algorithm for determining the execution duration of a file using artifacts found in the
Shimcache: a proxy between Windows versions that ensures backwards compatibility of executables [28].
After explaining the details of the timing algorithm, the authors explained how their machine learning-
based scoring algorithm could aid in detecting malicious behavior in Windows environments. Using inputs
from the Shimcache, Prefetch and Windows Event Logs, the machine learning algorithm computes the data
and scores the time frame accordingly. As outlined above, the scoring module takes a list of commands
commonly used by attackers to execute distinct phases of an advanced persistent threat attack [28].

The algorithm used for training is a Random Forest algorithm, a black-box training method. This means
that the researchers know the data they put in, but the computations on the data inside the algorithm are
unknown to researchers. They found that implementing the model in this manner gave them a precision of
86.7% and a recall score of 75.6% [28]. The results are not fantastic, and researchers were upset that specific
applications like PowerShell were flagged as malicious even when other processes were not spawned from
the parent process. Part of the issue with the method is that the researchers only focus on a small slice of
application execution, by only focusing on a small number of applications, processes, and indicators of
compromise.

Furthermore, researchers only supply the machine learning algorithm with a narrow slice of time and
decide on malicious behaviors that took place over a long period. As a research piece, it is interesting to
note how a machine learning-based model with basic Windows events can have some success at detecting
malicious behavior in a Windows environment. However, universally applying these rules to a networked
environment would not give sufficient data to analysts looking to protect a production network. The most
helpful research conducted in this study is the use of default artifacts inherent in all Windows systems to
assist in the detection of malicious behavior in an environment and could be used in numerous other
approaches to reduce the need for specialized endpoint monitoring systems to be installed on user
workstations. What is important to note, however, about this research is that the Windows operating
system creates enough logs and artifacts to successfully identify malicious behavior without the use of
third-party applications. A similar methodology will be employed in sections III, IV, and V as this research
attempts to detect ShadowMove.

Detecting Abuse of Domain Administrator privilege using Windows Event Log

Fujimoto et al. compared methods for detecting the abuse of domain administrator credentials proposed
by other researchers. Since many detection methods are interested in detecting specific CVE's and attack
methodologies like "Mimi Katz" or "Kerberoasting," the researchers are interested in combining the eclectic
methodologies into a central repository of detection methods that can be used to detect abuse of domain
administrator credentials into a single tool [29]. The researchers outline useful methods proposed by other
researchers to detect abuse of domain administrator credentials. A detection method proposed by Shingo
Abe outlines using Windows Event Logs to detect abnormal administrative access to resources by
correlating historical data with daily use of administrative credentials [30]. Fujimoto et al. include research
done by Shusei Tomonaga at JPCERT/CC into common commands executed by attackers during an APT
campaign [31]. Fujimoto et al. focused solely on correlating Windows Event Log 4688—A New System
Process Has Been Created—to detect abuse of domain administrator privileges. Fujimoto et al. use research
by Junghoon Oh at AhnLab to detect APT lateral movement using administrative shares to spread access

305

Adv. Technol. 2022, 2(3), 291-321

[32]. Fujimoto et al. use the event log 5140—A network share object was accessed—to determine if an
administrative account has wrongfully accessed a network share: a common tactic used by attackers to
spread malware across the domain. Finally, Fujimoto et al. include research done by Idan Plotnik et al. and
Andrey Dulkin et al. to detect golden ticket creation by logging Kerberos Service Ticket requests that have
no prior Ticket-Granting-Ticket (TGT) associated with them [33][34]. Fujimoto et al. considered all these
known methodologies for detecting abuse of domain administrator accounts and developed their method
with a high detection rate. Their method focused on watching the domain controller for the creation of
golden tickets or credential theft and did not detect abuse of all machines in the domain. This method,
therefore, is not used to detect lateral movement wherein the attacker does not contact the domain
controller for escalated privileges: e.g., in the case of spear-phishing an escalated account. Fujimoto et al.
propose a sophisticated signature detection system that utilizes built-in Windows Command-Line-
Interface (CLI) tools and known privilege escalation methodologies to detect APT privilege escalation and
Domain Administrator account abuse in a Windows Active Directory environment. Their results are subpar
as they have a high rate of false negatives across all detection categories.

Furthermore, not detecting abuse of a domain administrator account typically means that the attackers
have compromised the entire domain, and quick and exact remediation must occur at once. While novel in
its scope and thorough in its investigation of methodologies used to compromise domain administrator
accounts, different methods must be used to detect and prevent privilege escalation attacks more precisely.
The important artifact from this research is that only Windows event logs were used to detect malicious
movement in a system. Nevertheless, it is possible to garner valuable information from intrinsic logging
sources.

Overall, whether proposing new methods for detection like Holt et al., Lie et al., or Bai et al., or presenting
methods for preventing known attacks like the MITRE Group or Pektas et al., this literature review was
designed to give the reader a flavor of a wide swath of research that is ongoing in the field of lateral
movement detection. It covers new methodologies for improving detection rate, reducing false positives,
and increasing lateral movement defenses by using graphs, machine learning as well as new frameworks
of thought. Finally, by outlining ShadowMove and using Windows event logs and digital artifacts to detect
lateral movement, the final section of the literature review was designed to give the reader a strong base of
knowledge from which to draw when reading about the original methodology and tactics utilized in this
research to detect ShadowMove. This feat has not yet been completed.

To bypass air gaps or to increase the likelihood of reaching difficult-to-reach machines, attackers may copy
malware to removable media in the hopes that it is inserted into another machine where they will have
access to more sensitive data. Mitigations include disabling autorun as attackers have used the autorun
feature to execute malware automatically when a user inserts the removable media device into a new
computer. Likewise, limiting USB storage devices on networked computers will make it nearly impossible

for removable media to be used as an attack vector.

Methodology
Lateral movement is a well-documented strategy employed by attackers going after enterprise systems. In

recent years, defense and detection methods implemented by defenders have gotten more sophisticated.
Enterprise tool sets from companies like Stealthbits, Arctic Wolf, Rapid 7, Palo Alto, and others have the
capability and built-in parameters to detect traditional lateral movement techniques like Kerberoasting,

306

Adv. Technol. 2022, 2(3), 291-321

Pass the Hash, and Pass the Ticket. Likewise, many of these toolsets also include anomaly detection
capabilities that monitor user activity, create a baseline for typical use, and alert when the user strays
outside the normal boundaries of daily activity. For traditional lateral movement techniques, these
detection methods are more than enough to determine whether a compromised user or an attacker-created
user is bypassing security protocol and moving abnormally through enterprise systems. Once attackers
gain a foothold during an attack, the traditional methods for expanding influence within the network
include remote service exploitation, tool transfer, session hijacking exploiting remote services like SMB or
RDP, replication through removable media, software deployment tools, shared-content poisoning, or
alternative authentication material usage like pass-the-hash or pass-the-ticket. Many of the toolkits and
methods for dumping credentials or copying hashes like Mimi Katz or LSASS dumps are detected by
traditional antimalware companies. In many cases, an inexperienced attacker using standard toolsets like
Mimi Katz will be caught by traditional endpoint detection since many of these programs are picked up
and deleted based on signature or behavior. In this section, we study a proof-of-concept code that utilizes
packaged DLLs, hijacks ongoing TCP connections, and enables the attacker to move laterally through
Windows systems undetected by endpoint protection software. In studying the code, we determine a
framework to audit, detect, and alert on possible execution of lateral movement using the Shadow Move
lateral movement variant. While this case study focuses on a single malware variant that hijacks specific
DLLs, the process for enabling more advanced Windows auditing, parsing high volumes of data for
relevant audit logs, and narrowing the scope of the search for specific DLL function calls is highly relevant

to any malware strain that may use similar methods to the Shadow Move attack variant.

VM Configuration

The test environment was created in VMWare Workstation Pro on a host machine running Windows 10
Pro. The virtual machine was given 8 Gigabytes of RAM, two processor cores with two threads each giving
it four logical processors, a 120 Gigabyte hard disk, a network card using NAT, and two monitors using 3D
acceleration. There was also a folder shared between the host and the guest operating system to move files

between systems for an easier research experience.

Software Used to Build the Binaries.

Windows 10 was installed on the virtual machine and updated to version 10.0.18363 with all required and
recommended patches. To build the ShadowMove code for testing, Microsoft Visual Studio 2019
Community Edition—version 16.9.2-was installed along with all the C, C#, and C++ packages for Windows
development. A screenshot of the installation options used can be seen in Figure 1.

Finally, the WDK is used to access the ntdll.lib and Ws32_32.Lib files for the ShadowMove build [35].

307

Adv. Technol. 2022, 2(3), 291-321

Madifying — Visual Studio Community 2019 — 168.2 X

Workloads Individual components Language packs Installation locations

[| Python development Node js development
Editing, debugging, interactive development and source Build scalable network applications using Nodejs, an Installation details
control for Python. asynchronous event-driven JavaScript runtime.

« Qptional
Android SDK setup (AP level 30)

IntelliCode
Desktop & Mobile (5)

~ Mobile development with C++
E] NET desktop development 'I';-] Desktop development with C++ v Included
Build WPF, Windows Forms, and console applications Build medern C++ apps for Windows using tools of your 9 G R
using C#, Visual Basic, and F# with .NET Core and .NET Fr... choice, including MSVC, Clang, CMake, or MSBuild. e
¥ Android SDK setup (4P| level 25} (local inst...
~ (Optional
Andraid NDK (R168)
MM Universal Windows Platform development 0 Mobile development with NET Apache Ant (19.3)
Wl create applications for the Universal Windows Platform Build cross-platform applications for i0S, Android or C++ Android development tools
with (%, VB, or optionally C++. Windows using Xamarin. B
? ! ¢ IntelliCode
Google Android Emulator (AP Level 25) {L..
Intel Hardware Accelerated Execution Man..,
*+7) Mabile development with C++ Android NDK (R168) (32bit)
Build cross-platform applications for i0S, Android or C++ i0S development tools
Windows using C++. IncrediBuild - Build Acceleration

¥ Individual components

Location
C:\Program Files (x86)\Microsoft Visual Studic\2019\Community
Total space required -738 MB

By continuing, you agree to the license for the Visual Studio edition you selected. We also offer the ability to download other software with Visual Studio. .
This software is licensed separately, as set out in the 3rd Party Notices or in its accompanying license. By continuing, you also agree to those licenses. Install while downloading ~ O Modify

Figure 1. Packages installed to build C, C#, and C++ code in Windows 10.

Software used for monitoring, diagnosis, and alerting.

To monitor the software and DLL function calls at runtime the software API Monitor v2 was utilized [36].
This program monitors the application stack and detects which functions are called from a specific DLL
during a software’s runtime. To monitor Windows Event Logs generated at runtime, a free trial of
DataDog—a cloud-based SIEM tool that can handle a wide variety of logs —was used to monitor, filter, and

search the logs generated on the virtual machine [37].

ShadowMove Essentials and Socket Duplication

A group of faculty and students from the University of Illinois Springfield, the University of North Carolina
at Charlotte, and Louisiana State University developed an attack methodology that utilizes Windows DLL
and API functions to move laterally between Windows systems without the need to steal credentials or
generate new authenticated sessions. The team named this stealthy movement technique ShadowMove.
The code functions by exploiting normally trusted connections between any two networked Windows
devices running unencrypted connections like FTP, WinRM, and MS SQL. The team released their research
in August 2020. Typical signature and anomaly-based malware detection software look for custom
executable code that either has patterns that are known to be malicious or have a signature of a known
malicious file. By using code that calls internal Windows functions, the team was able to bypass standard
antivirus programs because the operations done by the executable are standard functions that the Windows
operating system depends on for normal use. Likewise, using trusted Windows DLL ensures that the

attacker can run the malware on any modern Windows system so long as the libraries are updated

308

Adv. Technol. 2022, 2(3), 291-321

sufficiently. Finally, when security analysts search for lateral movement, one of the key giveaways in
traditional methods is the creation of new authenticated sessions using legitimate credentials or the
dumping/stealing password hashes from Kerberos or LSASS. Once the attacker gains an initial foothold on
the system, no credentials need to be stolen from any location, nor do any new authenticated sessions need
to be created between systems. Since the attack takes place on authentically generated sessions by the
authorized user and the ShadowMove code only latches onto established sessions, it is extremely difficult
for an analyst to discover the lateral movement when following traditional attack patterns. To understand
how ShadowMove hijacks a specific socket duplication event in the Windows operating system, we must
first understand how the system establishes a typical socket duplication event to share a socket with a
remote program. First, a local or host process will call the WSASocket API from the WS2_32 DLL. This, in
turn, calls NTCreateFile, creates a new SOCKET_INFORMATION object, and calls NtDeviceloControlFile,
which creates kernel-level information about the handle. Second, the host process will call
WSADuplicateSocket from the WS2_32 DLL to duplicate the socket and share it with the guest process.
WSADuplicateSocket will copy the data stored in handle 1 and create a copy called handle 2. Finally, the
guest process will call WSASocket to extract handle 2 and use the information contained therein to call
NtDeviceloControlFile to retrieve the same kernel-level information placed by the host program in step 1.
Once this is complete, both handles share a duplicated socket, and the host and guest process can
communicate using the same socket. ShadowMove interrupts this process by injecting itself into this
workflow by copying handle 1 from the host process into a new handle 2, and using the copied object to
connect to the socket in a similar fashion as a normal guest process would. However, ShadowMove
differentiates itself from the standard guest process as it uses the ntdll DLL for querying system
information and duplicating the system object. ShadowMove, in its most basic form, takes place in five
steps. First, it calls NtQuerySystemInformation from the ntdll DLL to query system information and find a
handle that it can copy. When it finds a handle to copy, the program determines whether the object it is
attempting to copy is an ancillary function driver (AFD). Second, if the object it finds is an AFD handle,
ShadowMove calls NTDuplicateObject from the ntdll DLL and creates a copy of the original handle. Third,
ShadowMove queries the peer name passing the handle as a parameter. The handle duplication is bypassed
until a peer name is found matching the name in the handle. This is to ensure that the connection that is
hijacked is the one between the two desired peers. Fourth, when the correct connection is discovered,
ShadowMove calls WSADuplicateSocketW from the WS2_32 DLL, passing the copied handle as the
parameter. This creates an expected protocol structure that the kernel system on the host machine will
expect. Finally, ShadowMove calls the WSASocketW API from the WS2_32 DLL, passing the WSAProtocol
created in the previous step as the parameter. This step opens a duplicated—or shared—socket with the host
machine and creates an injectable tunnel wherein ShadowMove can inject any data between the host and

the guest without generating a new authenticated session.

Design of the Study

The ShadowMove proof-of-concept code was provided to by Md Rabbi Alam and Dr. Jinpeng Wei at the
University of North Carolina at Charlotte. The proof-of-concept code comes in three parts. The first is a
TCP Echo Server application written in C#. It is a simple TCP Echo Server that receives a string of text from
a TCP Echo Client and returns the same text to the Client as was received by the Server. The second portion

309

Adv. Technol. 2022, 2(3), 291-321

is a TCP echo Client that sends a message to a TCP Echo Server and receives the TCP echo reply from the
server. The final portion included with the package is the ShadowMove proof-of-concept code which is
written in C++. This proof-of-concept code works as described above, with the main caveat being that the
ntdll DLL and WS2_32 DLL are packaged into the C++ executable using the C++ linker functionality in
Visual Studio 2019, the ntdIlLlib and the W52_32.1ib files found in the Windows Driver Development Kit
[35]. The fact that the DLL files are linked internally with the binary after the software is built makes
auditing specific Windows files significantly more difficult. After some basic troubleshooting, the
ShadowMove code was compiled on the research lab virtual machine and was able to successfully duplicate
the handle during runtime of the TCPEchoClient and TCPEchoServer. To detect specific API calls from
within an executable at runtime, a process called hooking is required. One of the most well-documented
and trusted free API hooking software available is API Monitor. Using API Monitor We were able to
monitor all API calls from the PoC.exe ShadowMove code and find all instances of ShadowMove
functioning as intended and duplicating a process handle. This is a crucial step, because DLLs contain
numerous functions and determining exactly which function is called from the library is essential in
determining if ShadowMove took place or another benign process was accessing similar libraries. There
are native options in the Windows operating system to monitor DLL files. The Windows Security Auditing
suite in conjunction with the Windows Event Viewer can give a security analyst or systems administrator
the ability to view access to specific DLLs like WS2_32 or ntdll. However, the DLL files include numerous
functions that the Windows operating system needs to function [8]. Therefore, monitoring the DLL file that
contains the functions used for ShadowMove and alerting when the DLL files are called in a specific order
is a way to give an alert that ShadowMove occurred, however, there is the possibility that this will generate
many false positives as the operating system uses these files for standard procedures. Therefore, one of the
greatest difficulties in alerting on the possibility of a ShadowMove taking place inside the operating system
is monitoring the DLLs for specific function calls. In my research, we did not find a Security Information
and Event Management (SIEM) solution that had the ability to monitor specific API calls from DLL files.
Furthermore, since the C++ code links the ntdll.lib and WS2_32.1ib files with the executable, the DLL files
used for ShadowMove are called directly from the executable. This makes detection of the ShadowMove
even more difficult. However, there are Windows Security Events that are logged by the Operating System
that take place when ShadowMove occurs. Likewise, some events around the execution of ShadowMove
also generate Windows Security Events. Since monitoring the DLL files is not always possible as they are
linked, monitoring the Windows Events is the first line of defense in detecting ShadowMove. The
methodology of this study includes compiling a functioning version of ShadowMove, running the attack
against the TCP Echo Server and TCP Echo Client running on the same machine, monitoring the API
Monitor Software to determine whether a successful ShadowMove socket duplication occurred,
customizing the Windows event logs so that pertinent data is sent to the DataDog Cloud SIEM, monitoring
the logs and creating customized views in DataDog to remove unimportant log files, and exporting a
comma separated values file so an analyst can manually determine whether a ShadowMove may have

occurred.

310

Adv. Technol. 2022, 2(3), 291-321

Data Collection and Tools and Techniques
To collect pertinent data to detect and predict when ShadowMove may have occurred, Windows 10 settings
were adjusted to increase visibility into operating system events, and additional software was installed to
collect the Windows Event Logs and parse the data once it was collected. Because ShadowMove utilizes
Windows DLLs as part of its core functionality, auditing and monitoring the DLLs used by the malicious
code is vital in determining when a ShadowMove may have occurred. For this, the local security policy was
adjusted in Windows 10 to log file access and process tracking events in the Windows Event Viewer. To
activate the necessary local security policies, open the Local Security Policy application by searching
Local Security Policy " in the Windows 10 search box and open the program. In the navigation menu on
the left panel, expand “Local Policies" and open the “Audit Policy” subfolder. Within the audit policy
subfolder, there are two important auditing policies that must be activated. The first is “Audit Object
Access” , which creates an event when a user accesses an item like a file, folder registry key, printer, or
other items [38]. This policy is important because it registers events related to the closing of object handles.
The second policy that must be activated in the local security policy is “Audit Process Tracking". This
security auditing policy detects when a handle to an object is duplicated and when processes are started or
terminated [38][39]. ShadowMove utilizes ntdll.dll and WS2_32.dll to duplicate and inject into non-
encrypted network transmissions. To detect software that is accessing these specific DLLs to alert on
potentially malicious handle duplication, auditing the access to the files is a function built into the Windows
operating system. To activate the auditing feature on these specific DLLs, navigate to the files in the
C:\Windows\System32\ folder, right-click on the file to be monitored, click properties, click on the
Security” tab, click on the button labelled “Advanced” , click on the “Auditing” tab, click “Continue
’ to provide administrative privileges, click “Add” , click “Select a principal” , type “Everyone” into
the box, click “Check Spelling” , click “ok” , select the check box next to the “Full Control” label, click
“ok” , click “Apply” , click “ok” , and click “ok” . Once this set of steps is completed, anytime the
file is executed, read, written to, or changed, an audit log will be sent to the Windows Event Viewer. This
process should be repeated on ntdll.dll, mswsock.dll, and WS2_32.dIl. The logs will contain timestamps,
the user that accessed the file, and the process that called the file. Suppose ShadowMove is utilizing the
DLLs packaged with the Windows operating system. In that case, when it touches a file during execution,
the access will be logged and searchable by the SIEM tool or in the Windows Event Viewer. There is one
final DLL worth mentioning that should be monitored for access. Since the version of ShadowMove that
was run linked the ntdlILlib file and the WS2_32.lib into the executable using a linker function in Microsoft
Visual Studio. The ntdll.dll and W52_32.d1l on the operating system were not touched during the execution
of ShadowMove because they had them packaged into the executable. There is a file in the
C:\Windows\SysWOW®64\ folder called wshqos.dll. This DLL is called whenever an executable looks to
access a function from a linked library. Since the more advanced version of ShadowMove uses linked
libraries to hide its execution and intentions better, monitoring the wshqos.dll for access will alert an
administrator whenever a file using linked library files is executed. To monitor DLL access and function
calls during runtime to understand exactly how it functions, a program called API Monitor was installed
to hook the DLL calls and monitor which APIs were accessed during the application runtime. Screenshots

of the API Monitor software detecting the four main stages of ShadowMove are described in section IV.

311

Adv. Technol. 2022, 2(3), 291-321

Finally, to aggregate logs and implement a better search function, DataDog Cloud SIEM was utilized to
collect all Windows Security and Application Logs from the Windows endpoint using the DataDog agent.
The agent installation is documented on the website but simply requires the executable to be run by an
administrator, the API key provided for the specific DataDog instance is inserted during the installation,
and the log handler is installed directly from the DataDog Client Management Console using a few clicks.
[37][40].

As most of the application code required to run ShadowMove is built into the Windows operating system,
all the software needed to detect ShadowMove is also included with the Windows operating system. Log
exports and searches can be done with the Windows Event Viewer; however, for convenience, a free trial
of DataDog Cloud SIEM was used as the functionality and filtering capabilities of the SIEM far exceed those
of the Windows Event Viewer. Since this is a research project intent on discovering vulnerabilities in a
malicious piece of code, utilizing an APl hooking tool like API Monitor was highly beneficial to take a closer
look at API calls for research purposes. However, in a production environment, an API hooking tool is not

strictly necessary for detecting ShadowMove.

Data Presentation and Analysis
To simulate a more realistic breach scenario, the virtual lab machine was left running throughout the day

with light web browsing and other tasks being completed on it to generate logs. During this time, the
TCPEchoClient.exe, TCPEchoServer.exe, and PoC.exe commands were executed, and the socket was
duplicated. During the attack, the APIs from PoC.exe were hooked to prove that the socket duplication
successfully occurred and to demonstrate that all DLLs and library files were being called successfully.
Windows 10 forwarded all Windows Security logs to DataDog Cloud SIEM during this timeframe. A four-
hour timeframe within which the attack occurred was selected to investigate as this would be a realistic
window within which an analyst may need to search for the execution of potentially malicious software.
This section will explain why analysts must find meaningful methods for narrowing the data collected
from Windows systems to pertinent timeframes and log types. Following will be a presentation of the data,
an explanation of the logs collected over four hours, API calls of interest from the API Monitor software
showing how ShadowMove successfully executed and duplicated a handle, and the pertinent data
gathered from the Windows Security logs and how that data was filtered out of the other four hours of
data.

Data Presentation

Log File Size Reduction for Manual Inspection Simplification

As explained in Section III, collecting logs and forwarding them to a SIEM solution is straightforward;
however, the number of logs generated by a sole source can be astronomical. The logs were generated on a
mostly idle virtual machine running very few executables or services. If the time of the malicious executable
execution is known, narrowing the timeframe to a shorter period or filtering out logs that are unneeded for
detection is vital for detection purposes. Most enterprise systems will have hundreds or thousands of
endpoints generating more logs than the virtual machine used for testing, so knowing the indicators of

compromise is vital in detecting a ShadowMove. Figure 2 demonstrates this by displaying a four-hour

312

Adv. Technol. 2022, 2(3), 291-321

period within which over 38,584 Security events were logged and sent to the SIEM tool.
Blviews) Logs + Sawe A Mar 25, 400 pen - Mar 25, B00 pin - Hrw a

:.

i = e o = e o Ty e W e oy e s o e =
Q search facets 1 Hige Controls | Visualize as imeseries Top st Table & Dot % Options
showing 7 o7 * Il Watchdag Trights Error authiers 0
~ CORE
+ source 1 oate HosT SIRVICE CONTENT

Mar 25 10:56:81.631 DESKTOP-FTSFMSD Security A tokon right was adjusted. Subject: Security ID: 8-1-5.18 Account Nomc: DESKTOP-FISFNSDS Account Donain: WORKCROUP Lagon 10 Bu3E? Target A -

7 Host Mar 75 10:56 81 627 DESKTOP-FTSFMSD Security A token right wax adjusted ject Seeurity TO: 8-1-5-18 Aceount Nase! DFSKTOP-FTSFNSDS Account Dowain: WORKGROUP Lagan 10 Bx3F7 Targer A

~ Mar 25 19:56 81,621 DESKTOP-TTSPNSD Security A token right wez adjusted. Subject: Security ID: 5-1-5-10 Account Name: DESKTOR-F7SINSDS Account Dommin: WORKGROUP Logon I0: #x3IE? Target Ac
 Service Mar 25 10:56:81.619 OESKTOP-F75FNSD Security A token right was adjusted. Subject. Security ID: 5-1-5-18 Account K DESKTOP-F7SFNSDS Account Dcoain: WORKGROUP Logon ID: Bw3E? Target Ad -
Security 285k War 75 10:5681.615 DESKTOP-FTSFMSD Security A Token right was adjusted jeet Security TO: S-1-5-18 Ascount Nane: DESKTOP-FTSFHSDG Account Doaain: WIRKGROUP Lagon 00 BxdF7 Targer &
System 4 Mar 25 719:56.81.610 DCSKTOP-TTSPMSD Security A token right wes adjusted. Sub Security ID: §-1-5-10 Account Name: DESKTOP-FISTNSDS Account Domsin: WORKGROUP Logon 10: #xJE? Target Acco
Windows Pawershell a2 Mar 25 19:50 81,685 DESKTOP-FTEFNSD Security A token right was adjusted. Subject: Security ID: §-1-8-18 Account DESKTOR-FISFNSDS Account Oomain: WORKGROUP Logon 10: #x3EF Target Ac -
Appiication Mor 25 19:56:81.597 DEEMTOP-FTSFNSD Security A token right was adjusted. Subject: Security ID: 5-1-5-18 Account & : DESKTOP-FISFNSDS Account Ocoodn: WORKOROUP Logon 10: Bx3E7 Target Acc -
Mar 25 10:5681.580 DESKTOP-F7SFMSD Security A tokon right was adjusted. Subject: Security T0: 8-1-5-18 Aceount K DEZKTOP-FISFNEDS Account Domadin: WORKDROUP Lagan 10 Bw3E7 Targat Ad -
+ Status Mar 25 19:56.91.585 DESKTOP-F7SFNSD Security A token right was adjusted. Subject: Security 1D: §-1-5-18 Account Wame: DESKTOP-FISFNSDS Account Oonain: WORKGROUP Logon 10: @x3E? Target Account: -
Mor 25 19:56 81.588 DESKTOP-F7SFNSD Security A token right was adjusted. Subject: Security ID: 5-1-5-18 Account Nome: DESKTOP-FTSFNSDS Account Doooin: WORKDROUP Logor Bx3ET Target A -
lermor o Mar 25 10:5558.637 DESKTOP-F7SFMSD Security The Windows Filtering FlatTarm has permitted a cormection. Appli Infermat i Pracesa 10 1188 Application M A ddi sk volumed ' pi
Warn Mar 25 1915550,693 DESKTOP-FTSFMSD Security The Windows Filtering Platfarn has permitted s cormection, Application Toformstion: Process 100 1187 Application s \harddiskealumedy
Info 386k Mar 2% 19:5% 80,620 DCSKTOP-FTEFWSD Security A token right waz adjusted. e Securdty 1b: §-1-5-18 Account LSKTOP-FTSFNGDS Account Domadn: WORKGROUP Logon 10: #x3C7 Target Ac -
Mar 25 19:55:54.649 DESKTOP-FTSFNSD Security A token right was sdjusted. Subject: Security 10: 5-1-5-18 Account K ESKTOR-FTSFNSDS Account Oomain: WORKGROUP Logon 10: Bx3E7 Target Account: _
~ OTHERS Mar 25 10:55:54 624 DESKTOP-FTSPMED Security A roken right was adjusted b Securiry T 1-5-18 Aceount IESKTOR-FISFHSDS Account Domadin: WIRKGROUP Logon T #x3E7 Targer Ac

4 Event EventData.Data Proces... Mar 25 19:54:88. 604 DESKTOP-FTEFNSD Security A token right was adjusted aject: Security ID: 5-1-5-10 Account Wame: DESKTOR-FISFNSDS Account din: WORKGROUP Logon I0: 8x3E? Target Account: o

Mar 25 19:55:53.812 DEEMTOP-FTSFNSD Security The Windows Filtering Platform has permitted a conmection. Application Information: Process I0: 1188 Application Meme: \device\harddiskvolumed\progr-

» Event.System.EventID Mar 25 10:55:53. 881 DOESKTOP-FTSFKSD Security - The Windowa Filtering Flatform has permitted a cornection. Application Informati Froce: 1188 Application Morme: \deviee\harddiskwolume3'\progr.

Mar 75 10:55:51 506 DESKTOP-FTSFNSD Security A token right wax adjusted ject Security T0: 5<1-5-18 Aceount Nase: DESKTOP-FTSFNSDS Account Domain: WORKGROUP Lagan 10 Bx3F7 Targer A

Mar 25 19:55:51.561 DESKTOP-F7SPMSD Security A token right was adjusted e Security Tb: §-1-5-10 Account Nane: DESKTOP-FISFNSDS Account Donain: WORKGROUP Logon 10 #x3E7 Target Ac

Mar 25 10:55:51.501 OESKTOP-F75FKSD Security A token right was adjusted. Subject: Security ID: 8-1-5-18 Account K DESKTOR-FISFNSDS Account [WORKCROUP Lagon 10 Bx3ET Target A -
War 75 10:5550.567 DESKTOP-FTSFMSD Security A Token right was adjusted jeet ! Saeurity Th: S-1-5-18 Aceount Nuse: DESKTOP-FTSFNSDS Actount Oovain: WIRKGROUP Lagan T0° Be3E7 Targar &

Mar 25 19:58:40.567 DESKTOP-TTEPNSD Security A token right waz adjusted. Subje Securdty 100 §-1-5-10 Account Wame: DESKTOR-FTSTHSDS Account Domadin: WORKGROUR Lagon 10: #x3E7 Target ac -
Mar 25 15:55:40.550 DESKTOP-F7EFNSD Security The Mindows Filtering Flatform has permitted a cormection. Application Information: Process 1188 Application M \device'\harddiskvolumed\progro
Mar 25 19:55:48.588 DEEMTOP-FTSFNSD Security The Mindows Filtering Flatform has permdtted o cormection. Application Informaticn: Froce: 188 Application M \device\harddiskvolumed\progr-
Mar 25 10:55.48.585 DESKTOP-FTSFKSD Security - A token right was adjusted. Subject: Security ID: 8-1-5-18 Account K DEZKTOP-FTSFHEDG Ay WORKCROUP Logon 10 Bx3E7 Target A -
Mar 25 159:55:44.728 DESKTOP-F7SFNSD Security The Windows Filtering Flatform has permitted a cornection. Application Information: Frocess 48 Application M ‘device\harddiskvolumed\progr-
Mar 25 19:55:43.491 OESKTOP-F7SFNSD Security The Mindows Filtering Flatform has permdtted o cormecticn. Application Infcrmaticn: Froce: 3048 Application Mome: \device\harddiskvolumed\progr-

Figure 2. A screenshot from DataDog SIEM displaying the number of logs generated in a mostly idle
four-hour period. Before applying any filters there were 38,554 log files to parse.

To narrow the scope of logs, filters were implemented on the DataDog SIEM only to include the Windows
Security Event IDs related to ShadowMove. These event IDs are 4663 “An attempt was made to access an
object” , 4688 “A new process was created” , 4689 “A process has exited” , and 4690 “An attempt was
made to duplicate a handle to an object” . This filter is displayed in Figure 3. Furthermore, once the filter
was applied, the number of events listed was reduced to 3,238 as demonstrated in Figure 4. Once the filter
was applied to the target data, a comma-separated values file was exported and downloaded for filtering,
searching, and manual inspection using Microsoft Excel.

~ Event.System.EventID
Q Filter values

4690

"] 5158

4688

4689

[] 4664

[] 4985

4663

] 5379

T

1.01k

213

Figure 3. Screenshot taken from DataDog SIEM showing the filter settings applied to reduce the number
of logs to review as well as the number of those logs generated in the four-hour period.

313

Clviews 35 Logs

+ save

Adv. Technol. 2022, 2(3), 291-321

ah Mar 25,4:00 pm - Mar 25, 8:00 pm - «»» a z

-@Evant Systam.EventiD:4703 OR 5156 OR 4656 OR 4658 OR 5158 OR 5379 OR 4624 OR 4672 OR 4662 OR 4702 OR 4799 OR 4798 OR 4611 OR 4698 OR 5152 OR 16 OR 5157 OR 4907 OR 4616 OR 44 OR 43 OR 19 OR 1102 OR 1 OR 5154 OR 4699 OR 4664 OR 4985 OR 4660

OR 5061 OR 4700 OR 4701) -service:(*Windows Powershell* OR Application OR Systern)

Aggregate by Fields

Patterns Transactions | @

WS,

Showing 6of 7
« core

> Source

> Host

 Service

security

() windows Powershell
[system

(] Application

~ status
leror

warn

Info

~ OTHERS

~ Event.Systom.EventiD

a
4690
[5158

663

1630

+ Add

(2 - }

(A2 - }

oS,

[E Hide Controls

DATE
Mar

Mar 25 17:31:58.736
Mar 25 17:31:58.751
Mar 25 17:31:56.689
Mar 25 17:31:56.617
25 17:31:55.308

Mar

Mar 28 17:31:86.311

Mar 25
Mar 26
Mar 25
Har 25
Har 25
Mar 25

Mar 25 17

Mar 25 17:31:57.214
Mar 25 17:32:26.199
25 18:09:30.651
Mar 26 17:31:

Mar

Mar

Mar 25 17

25 17:31:57.177
Mar 25 17:31:55.330

17:91:52 058
17:31:62 068
17:93:48.930
19:22:16.577
17:31:52.078
17:31:47 602

25 17:31:58. 59
31:56.604
Mar 25 10:45:02.670

700

visualize as [JIER] Timeseries

M watchdog Insights

HosT
DESKTOP-F75FNSD
DESKTOP-F7SFNSD
DESKTOP-F75FNSD

DESKTOP-F75FNSD
DESKTOP-F75FNSD.
DESKTOP-F75FNSD
DESKTOP-F78FNSD
DESKTOP-F75FNSD
DESKTOP-F78FNSD
DESKTOP-F75FNSD
DESKTOP-F75FNSD.
DESKTOP-F75FNSD
DESKTOP-F75FNSD
47,662 DESKTOP-F75FNSD
DESKTOP-F75FNSD
DESKTOP-F75FNSD
DESKTOP-F75FNSD
24 DESKTOP-F78FNSD

DESKTOP-F75FNSD
DESKTOP-F75FNSD
DESKTOP-F75FNSD

s,

DESKTOP-F7SFNSD Sec

730 7 1500 [N e Vs 1900 oS = s 0
Top Ust Table 3,238 results found s Export | & Options
Error outliers 0
SERVICE + EV.. CONTENT
Security 0x1034 A process has exited. Subject: Security 100 S-1-5-18 Account Neme: DESKTOP-F7SFNSDS Account Domsin: WORKGROUP Logon 10: 9x3E7 Process Infor
Security Ox113c A process has exited. Subject: Security 10: S-1-5-18 Account Nane: DESKTOP-F7SFNSDS Account Domain: WORKGROUP Logon I10: 6x3E7 Process Infor.
€x1148 A new process has been created. Creator Subject: Security 10: §-1-5-18 Account Nane: DESKTOP-F7SFNSDS Account Domain: WORKGROUP Logon 10: 6.
ex1140 Security 10: S-1-5-18 Account Nere: DESKTOP-F7SFNSDS Account Domsin: WORKGROUP Logon 10: 6x3E7 Process Infor.
ex11b8 eator Subject: Sec 5 WORKGROUP Logon 10: 6.
6x108 Security T0: 5-1-5- ©D: 8x3E7 Process Tnfor
ox1266 Creator Subject: Security WORKGROUP Logon T0: o
Security 0x120e Security 10: §-1-6-18 Aceount DESKTOP-F78FNSDS A 10: Bx3E7 Process Infor_
Security 0x1220 A new process has been crested. Creator Subject: Sacurity 10: §-1-5:18 Account Name: DESKTOP-F7SFNSDS Account Domain: WORKGROUP Logon 10: 0
Security 0x1220 A process has exited. Security 10: 6-1-6-18 Aceount Nome: DESKTOP-F7SFNSDS Account Domain: WORKGROUP Logon T0: x3E7 Process Infor.
Security 0x1248 A process has exited Security 10: -1-5 wme: DESKTOP-F75FNSDS Account 1 WORKGROUP Logon 10: 0x3E7 Process Tnfor
Security 0x12a8 A process has exited. security 10 DESKTOP-F75FNSDS Account 1 WORKGROUP Logon 10: Ox3IE7 Process Infor
Security ©x1280 A process has exited. Security 10 DESKTOP-F75FNSDS Account 1 WORKGROUP Logon 10: @x3E7 Process Infor.
Security ©x12a8 A new process has been . Creator sub 5-18 Account Nane: DESKTON NSDS Account Domain: WORKGROUP Logon 10: 6.
Security 0x12a8 A new process has been created. Creator Subject: Security T0 5-18 Account Name: DESKTOP-F7SFNSDS Account Domain: WORKGROUP Logon T0: &
Security ©x12a8 An attempt was made Lo access an object. Subject: Securdty 10 S-1-5-18 Account Name: DESKTOR-F7SFNSDS Account Domain: WORKGROUP Logon L0: .
Security 0x12a8 A process has exited. i: Security 10: 5-1-5-18 Account Name: DESKTOP-F7SFNSDS Account Domain: WORKGROUP Logon 10: 8x3E7 Process Tnfor
Security 0x1288 A process has exited L+ Security TD: 5-1-5-18 Account Nome: DESKTOP-F7SFNSDS Account 1 WORKGROUP Logon 10: @x3E7 Process Tnfor
Security 0x12b4 A process has exited. t: Security 10: 5-1-6-18 Account Nome: DESKTOP-F7SFNSOS Account 1 WORKGROUP Logon 10: @x3E7 Process Tnfor_
Security 0x12c8 A new process has been 0d. Creator Subject: Security 1 1-5-18 Account Name: DESKTO NSDS Account Domain: WORKGROUP Logon 10: 0.
Security 0x12c8 A process has exited. Ui Security 101 S-1-5-18 Account Name! DESKTOP-F7SFNSDS Account 1 WORKGROUP Logon 10: 3E7 Process Infor

Security @x12d8 A procass has

exited. Subject: Security 10: §-1-5-18 Account Name: DESKTOP-F7SFNSDS Account Domain: WORKGROUP Logon 10: Ox3E7 Process Infor

Figure 4. Screenshot of DataDog SIEM Log View with the ShadowMove Hunting filter applied. Notice
the substantial reduction in log volume by applying a simple filter based on Event ID.

API Monitor and Static Analysis of API Calls
Manual inspection of the API Monitor output shows the ingenuity behind the ShadowMove attack. Each

stage of the attack, as outlined in Section III, is caught during the execution of ShadowMove by API

Monitor. This section contains screenshots of the API calls made during runtime. It shows that successful

socket duplication occurs and demonstrates that the packaged libraries are one of Shadow Moves greatest

strengths and its biggest weakness. Something to note in figures five through eight is that all API calls are
pulled directly from PoC.exe; therefore, Log ID 4663 will not trigger on ntdll.dll nor WS2_32.dll when
PoC.exe is executed. In Figure 5, the ShadowMove program (PoC.exe) is executing the first step of
ShadowMove. Using the ntdllLdll packaged in the ntdlllib file, PoC.exe is calling the API
NtQuerySystemInformation to search for the AFD handle into which it can inject. Online 1028 the injectable

NN, - W

Tupe
SYSTEM_INFOR...
Fvoin
uLons
PULONG

buwno=ow

Module
Poc.exe
Poc.exe
POC.exe
PoC.exe

P

PaC.exe

@) (3] €\Users\kyler\Deskiop\est\PoC.exe - PID: | &

Time of Day

7:16:49.,249 PM

1
TGA9.249PM 1
71649263 FM 1
TIEA49.26IPM 1
769,263 PM 1
784,263 PM 1
TE49.263PM 1
TEA49.263PM 1
T1GA9.200PM 1
764,280 PN 1
TE49.341PM 1
716:49.341 PM 1
649,341 PM 1
TE49.341 PM 1

[T L4

Thread Maodule

b MRy O - T
Q, Al
PaC.exe
KERMELBASE.dil
KERNELBASE, dil
Poc.exe
KERMELBASE.all
PoC.exe

handle is found as noted by “Return Value: STATUS_SUCCESS” .

Return value Error

]

INFO_LENGTH_MISMATCH

TRUE

KERNELBASE. dil
Pac.exe
KERNELBASE. dil
Poc.exe

. STATUS_INFO_LENGTH_MISMATCH
TRUE
STATUS_INFO_LENGTH_MISMATCH
TRUE

0xc0000004 = The spe

OxeDO000DS = The spe

KERMELBASE.all
PoC exe
KERNELBASE il

288, STATUS_INFO_LENGTH_MISMATCH
TRUE
STATUS_INFO_LENGTH_MISMATCH

Oxc0000004 = The spe

0XC0000004 = The 5pe

[Focexe

PaC.exe
KERNELBASE. dil
KERNELBASE. dil
KERMELBASE.dll

Name Pre-Call value Post-Call value
- tass
B @ systemintormation 0x013a0bEE ox012a0B88
& Length 65536 65536
8 & Resulilength UL UL
Py STATUIS IMEA L ERETH RaishaATAL
Address Offset Location
Ox00ta 1B 1 owt b
oxoota3389 ox13389
00014343 ox13e3e
Ox001a3ca? On13car
Ox00ta3B3d Oon13p3d

| i L[|8 By T Fu[B

| APt Loader [monitoring | [output

247 MR Mons: StARARF

Figure 5. PoC.exe calls ntdll.dll from the linked library file to query system information to find an injectable AFD

handle.

314

Adv. Technol. 2022, 2(3), 291-321

In Figure 6, PoC.exe uses ntdll.dll to attempt and create a new object handle by duplicating the object
handle of the discovered AFD handle discovered in stage one. Again, note that the API call is originating

from PoC.exe and not ntdll.dll —this is due to the linked library files.

Ho Gl e m e |

(&[] C:AUsers\kyler\Desktop\test\PoC.exe - PID: || = Time of Day Thread Module Q Apl Return Valug Error ~
4102 7:1649.826PM 1 PoC.exe NtQueryObject (0x000001f4, ObjectNameinformation, 0 STATUS_SUCCESS
4103 T:16:49.826PM 1 KERNELBASE.dil NitWiiteFile (0x0D000054, NULL, NULL, NULL, 0 35, M. STATUS_SUCCESS
4104 T:1640.826PM 1 KERNELBASE.dIl RilValidateHeap (0x013:) TRUE
4105 7:16:49.826PM 1 KERNELBASE.dil RtlValidateHeap (0) TRUE
4106 7:16:49.826PM 1 PoC.exe CloseHandle (0x0000D1F4) TRUE
4107 T:16:49.826PM 1 KERNELBASE.dIl L-NtClose (0x00000174) STATUS_SUCCESS
4108 7:16:49.826PM 1 PoC.exe GetFileType [0x000003a4) FILE_TYPE_UNKNOWN
4109 7:16:49.826FPM 1 KERNELBASE.dl i-HtQuenyVolumelnformationFile (0x000003a4, 0x012 STATUS._INVALID_HANDLE OxcB000008 = An inva
4110 T:16:49.826PM 1 KERNELBASE.dIl §RHINtStatusToDOsEMor (STATUS_INVALID_HANDLE)} ERROR_INVALID_HANDLE
4111 71649.826PM 1 KERNELBASE.dil L-RtiSetLastWin32Ermor (ERROR_INVALID_HANDLE }
4112 TA649.826FPM 1 KERNELBASE.dIl NtWriteFile (0x00000054, NULL, NULL, HULL, 0 STATUS_SUCCESS
4113 T:1649.826PM 1 KERNELBASE.dIl NtWriteFile (0x00000054, NULL, NULL, NULL, 0x01 STATUS_SUCCESS
4114 7:16:49.826PM 1 PoC.exe Get CurrentProcess GetCurrentProcessi)
[TATUS_ SUCCESS L]
4116 T:1649.826PM 1 KERNELBASE.dIl NEWriteFile (0x00000054, NULL, NULL, NULL, STATUS_SUCCESS
4117 7:1649.826PM 1 PoC.exe NtQueryObject (0x000001f4, ObjectTypelnformation, STATUS_SUCCESS
4116 T:1640.826PM 1 PoC.exe NtCueryObject (0x000001F4, ObjectNamelnformation, 4096, 0... STATUS_SUCCESS
. S| misasazeem 1 KERNELBASE.dIl NEWriteFile (0x00000054. NULL NULL NULL 0x01 STATUS SUCCESS - v
[
£ Type Name Pre-Call Value Post-Call Value [N REENA
1 HANDLE @ SourceProcessHandle 0x000001¢4 0%000001c4 0000 £4 01 00 40
2 HANDLE @ SourceHandle 0x000003a4 0x00000324
3 HANDLE @ TargetProcessHandle GetCurrentProcess(GetCurrentProcess(
4 PHANDLE [H @ TargetHandle 0x012f51¢ = NULL Ox012ff51c = 0x00000114
5 ACCESS MASK & DesiredAccess 0 °
A nans 4 Handls8ttriburtes A o M
< >
% Module Address Offset Lacation
1 PoCexe OxD0F41l66 ox11d66
2 PoCexe 0x00r43389 ox13380
3 PoCexe Ox00r43e3e ox13e3e
4 PoCexe Ox00F43caT Ox13ca?
5 PoC.exe 0x00f43b3d ox13b3d (7 API Loader] & Monitaring Qutput
217 MB Mode: Standard

Figure 6. PoC.exe calling NTDuplicateObject to duplicate the AFD handle to use in a socket connection attempt.

Once ShadowMove successfully duplicates the object, PoC.exe calls WSADuplicateSocketW from
WS2_32.dll to create the special protocol structure for the final stage of the attack as shown in Figure 7.

| P

= B &-@
[5] C:\Users\kyler\Desktop\test\PoC.exe - PID:| | = Time of Day Thread Module Q APl Return Value Error @
4121 T1E49.826PM 1
1 L
4123 7:16:49.826 PM 1 KERNELBASE.dll NtQueryObject [00000014, ObjectHandleFlaginfarmation, 0x01 STATUS_SUCCESS
4124 T1E49.826PM 1 KERNELBASE.dll ~ NtWaitFarSingleObject (0xD00D01BO, FALSE, <) STATUS_TIMEOUT
4125 T1649.826PM 1 KERNELBASE.dll Envire gs (NULL, ™ STATUS_SUCCESS
4126 7:16:49.826 PM 1 KERNELBASE.dIl RtlinitUnicodeStringex \WINDOWSsystem32\mswsoc. STATUS_SUCCESS
4127 T1E49.826PM 1 KERNELBASE.dll ~LdrLoadDII {1, 0 5c4) STATUS_SUCCESS
4128 T1649.826PM 1 KERNELBASE.dl i-RtIRunOnceExecuteOnce (0 NULL, NULL) STATUS_SUCCESS
4129 7:16:49.826 PM 1 KERNEL32.DLL LdrResFindResourceDirectory (0 0x00000018E, 0x00000002, STATUS_RESOURCE_TYPE_NOT_FOUND 0xc000008a = Indicate
4130 T1649.826PM 1 ntdll.di “DllMain (0 DLL_PROCESS_ATTACH, NULL) TRUE
4131 T1649.826PM 1 mswsock.dll RtlInitializeCriticalSectionAndSpinCount (0 , 1000) STATUS_SUCCESS
4132 T1649.826PM 1 KERNELBASE.dil RtlAcquirePebLock [)
4133 T1E49.826PM 1 KERNELBASE.dll RtIFindClearBitsAndSet | 0 ,0) 7
4134 T1649.826PM 1 KERNELBASE.dll RtlReleasePeblack [)
4135 T:1649.826PM 1 KERNELBASE.dil RtIGetCurrentTransaction (} NULL
4136 T1649.826PM 1 KERNELBASE.dl RtiSetCurrentTransaction (NULL) TRUE
4137 T1649.826PM 1 KERNELBASE.dll RtlAcquireSRWLockExclusive (0
4138 T:1649.826PM 1 KERNELBASE.dl RtlReleaseSRWLOCKEXdIusve (O h
< > < >
£ Type Name Pre.Call Value Post-Call Value B
1 SOCKET s 500 500
2 DWORD @ dwProcessid 7420 7420
3 LPWSAPROTOC.. @ @ IpProtocolinfo 0x07a23b38 = { dwServiceFlags1 = .. 0x07a23b38 = { dwServiceFlagsi = ..
int <A Return 0
< >
£ Module Address Offset Location
1 PoCexe 0x00f4202d 0x1202d
2 PoC.exe 0x00f43389 0x13389
3 PoCexe Ox00M3e3e Oxl3e3e
4 PoCexe 0x00f43ca? 0x13ca?
5 PoCexe 0%00f43b3d 0v13b3d [API Loader] [Monitoring | = output
217 M8 Mode: Standard

Figure 7. PoC.exe calls WSADuplicateSocketW to create the special protocol structure that will be used to connect
to the socket in the final stage of ShadowMove.

315

Adv. Technol. 2022, 2(3), 291-321

Finally, once the special protocol structure is created in the third stage of the attack, PoC.exe calls
WSASocketW from WS2_32.dll and provides the information WSADuplicateSocketW to connect to the
duplicated socket. In Figure 8 the socket connection takes place on line 4547, and the data sent a request

can be seen on line 4557, while the reception of data can be seen on line 4560.
| sunmary | 4,661 calls

AR AN N | L

[C:Users\kyler\Desktop\test\PoC.exe - PID: || =

217MBused | PoCexe

B BB 800

4560 T:16:49.858 PM
<

Time of Day Thread Module \l API Return Value Errar 2
4543 T16:49.858PM 1 KERNELEASE. Il RtlAllocateHeap (Ox HEAP_ZERO_MEMORY | 1048576, 123) (0x0429af38
4544 T16:49.858PM 1 KERNELEASE. Il NtOpenProcess (0x012fedd, PROCESS_DUP_HANDLE, 0x012fedb0, 0 STATUS_SUCCESS
4543 T16:49.858PM 1 KERNELEASE. Il NtDuplicateObject { GetCurrentProcess(), 0 STATUS_SUCCESS
4546 T16:49.858PM 1 KERNELBASE | NtClose STATUS_SUCCESS
i]
4548 T16:49.858PM 1 KERMELBASE.dIl NtWaitForSingleObject { (x00000THO, FALSE, Dv012Fed95]) STATUS_TIMEQUT
4549 T:16:49.858PM 1 mswsock.dll RtlInitUnicodeString (0 NULL}
4550 T16:49.858PM 1 mswsock.dll NtDeviceloControlFile { 0x0), (x000001F8, NULL, NULL, Ox012febes STATUS_SUCCESS
4551 T:16:49.858PM 1 mswsock.dll RtlInitUnicodeString (0
4552 T16:49.858PM 1 mswsock.dll RtlAllocateHeap (Ox (0xD46b5713
4553 7:16:49.858 PM 1 mswsock.dll NtDeviceloCantrolFile (8, NULL, NULL, Ox012febBc STATUS_SUCCESS
4554 7:16:49.858 PM 1 KERNELBASE.dIl RtlAllocateHeap (Ox HEAP_ZERO_MEMORY | 1048576, 128 0x046b5810
4555 7:16:49.858 PM 1 KERNELBASE.dll - NtWaitForSingleObject (O b0, FALSE, 0x012fecd4) STATUS_TIMEGUT
4556 T16:49.858PM 1 KERNELEASE.dll -RtiAllocateHeap (0x01380000, HEAP_ZERO_MEMORY | 1048576, 128)
4557 T16:49.858PM 1 PoC.exe send (520, 0 ac, 13,0) 13
4558 T16:49.858PM 1 mswsock.dll +NtDeviceloControlFile (0x00000208, 0x000001f8, NULL, NULL, 0x012febcD STATUS_SUCCESS
4559 T16:49.858PM 1 PoC.exe recv (520, Ox M0, 1024, 0) 26
1 mswsock.dll = NtDeviceloControlFile [0x00000208. 0x000001f8. NULL. NULL. 0x0712feb... STATUS PENDING

0400000103 = The oo ¥
¥

< >
\
£ Type Name Pre.Call Value Post.Call Value A d a7 E'z g 85 [l
1 int ¢ af A A
2 int @ type -1 -1
3 int ¢ protocol A A
4 LPWSAPROTOC., [@ IpProtocolinfo 0x07a23b38 = { dwSenviceFlags1 = .. (x07a23b38 = { dwServiceFlags1 =
5 GROUP va 0 0
& RWADN a dwFlanc n n “
< >
Module Address Offset Location
1 PoCiexe Dx00420d1 0x120d1
2 PoCiexe 0x0043389 0x13389
3 PoCexe Dx00f43e3e Dx13e3e
4 PoCexe Ox00f43ca7 Dx13ca?
5 PoCexe 0xF43b3d 0xi3b3d (57 API Loader J FMonitoring | 5] output

21TMB Mode: Standard

Figure 8. PoC.exe calls WSADuplicateSocketW to duplicate the socket and connect.

When an attempt to duplicate a handle is made, a Windows Security event 4690 is generated. These events
are not rare, and within the four-hour window within which ShadowMove took place, there were over
1,850 handle duplication events logged as demonstrated in Figure 9. If a suspicious program name or
location is duplicated, it may raise red flags for an analyst; however, finding the process name in the sea of
logs is extremely difficult. Image nine displays the number of logs generated during the four-hour
timeframe

relevant to the investigation.

1.85K

500.00

444,00

440.00

4690

4663

4688

4689

Figure 9. A large number of handle duplication events takes place every hour on a Windows system.

316

Adv. Technol. 2022, 2(3), 291-321

Finally, Figure 10 displays an important log generated during ShadowMove. This log is an auditing log for
item access and is generated on C:\ Windows\ SysWOW64\ wshqos.dll. This DLL is responsible for loading
library files from executables. This event, in my research, rarely takes place and will be the key to finding

an instance of ShadowMove taking place among the numerous log files generated by a system.

Summary | 4,661 calls | 2.17MBused | PoCexe

& % me 5 | i @ 44| = o 3 | L -
5[] C:\Users\kyler\Desktop\test\PoC.exe - PID: | » Time of Day Thread Module Q, apt Return value Error ~

4308 Ti1649.842PM 1 KERNELBASE. dil - RtIDosSearchPath_Ustr (RTL_DOS_SEARCH_PATH_FLAG_APPLY_DEFAULT.., STATUS_SUCCESS
4309 T649842PM 1 KERNELEASE. il -~ RilinitUnicodeStringx 0x012fe5e, “CWINDOWS\System32iwshqos.... STATUS_SUCCESS
RtiDosFathNameToRelativeNtPathName_ U WithStatus (‘CAWINDOWS... | sTaTus success | |
£ 71648842 PM KERNELBASE. dll Nicre: 012fde45, FILE_READ_ATTRIBUTES | GENERIC_READ | SY... STATUS_SUCCESS
4312 7:16:49.842 PM KERNELBASE.dII

4313 T7116:49.842 PM KERNELBASE.dil TRUE

4314 T:16:49.842 PM KERMELBASE. il TRUE

4315 T:16:49,342 PM KERWELBASE. il Error | ERROR_SUCCESS)

4316 T:16:49.342 PM KERMELBASE. il ion (0x012fdfée, SECTION_MAP_READ | SECTION_QUERY, N. STATUS_SUCCESS

1
g
T
T
1
1
4317 T649.842PM 1 KERNELBASE.dil
4318 T:16:49842PM 1 KERNELBASE.dil
T
T
T
1
1
1
g

STATUS_IMAGE_NOT_AT_BASE

ction (0x00000210, GetCurrentProcess(, 0x012fdf7c, 0,

x (0, 0190000, 28672, Dx01 2fdf3c) STATUS_SUCCESS
STATUS_SUCCESS

4319 7116:49.842 PM KERNELBASE.dil
KERNELBASE.dil
KERNELBASE.dil
KERWELBASE. il
KERNELBASE.dil
KERNELBASE.dil

4320 7116:49.842 PM
4321 7:16:49,342 PM
4322 T:16:49,342 PM
4323 T:1G49.842FM
4324 T:649.842FM

4325 7:16:49.842 PM KERNELBASE. dIl e
< >)[< >
& Tpe Name Pre-Call Value Fost-Call Value Al o0 [F [F1]928, 8
1 PWsTR @ DosFileName OXO12dfB0 "CAWINDOWS System3.., 0x012fdf80 “CAWINDOWS\System | 0000 43 00 3a 00 Sc 00 S7 00 45 00 4= 00 44 00 45 00 57 00 53 00 S 00 [

= _ _ PR— _ . 001€ 53 00 7% 00 €5 00 &d 00 33 00 3 77 00 73 00
2 PUNICODE_STR.. & @ NiFileName 0x012fdeSc = {Length = 60, Maxim... 0x012fdeSe - {Length = 63, Maxit | -o= 22 00 77 S5 00 oo 00 o3 00 = oo &
3 PwWSTR: B ¢ FilePart NuLL HuLL
4 PRTL_RELATIVE... ¢ RelativeName 0x012fde98 = { RelativeName = {Le.. 0x012fde98 = { RelativeName = { L
NTCTATIIC & Raturn CTATIIC €1IFFESE he
< >
Module Address Offset Location
1 KERNELBASEI 0x776r252c o252 CreateFileW + Oxtéc
2 KERNELEASEdIl OcTTEr243e o243 CreateFilew = Oxse
3 KERNELBASEdIl O776f1efd Oxfletd LoadLibranyE - Oxdcd
4 KERNELBASE.dII 0x776f1bf7 Oxf1bf7 LoadLibraryExW = Ox1c7 \
5 KERNELBASE.dII 0x776f1aff Oxf 1aff LoadLibraryExW + Oxcf |7 API Loader SHQHIIDHHQ 5 Qutput
217MB Mode: Standard

Figure 10. Access to wshqos.dll is made to load library files into the ShadowMove process. This is one of the few
areas where ShadowMove directly interacts with the operating system.

Data Analysis

Because ShadowMove touches so little of the core operating system, handling duplication events are so
common, and DLLs used during the attack are innately trusted by Windows, automated detection of the
malicious software is difficult. In analyzing the data, we aim to propose a method by which analysts can
narrow down whether ShadowMove may have occurred. Manual analysis of the API calls will always be
necessary to prove beyond the shadow of a doubt that ShadowMove occurred; however, this methodology
that we propose will allow the analyst to narrow down the list of suspect processes to a level where manual
analysis is possible. The data analysis method is done in Microsoft Excel by manipulating the filter options
on the csv downloaded from DataDog Cloud SIEM. Since wshqos.dll is the one file on the operating system
that ShadowMove directly interacts with, the first filter is set on the message column, searching for any
cells that contain the string wshqos.dll:results of this can be seen in Figure 11. Applying this filter
significantly narrows the field as only eight cells contain the string wshqos.dll.

Figure 11. Setting the filter query to only list cells where the string wshqos.dll exists in the message
column.

317

Adv. Technol. 2022, 2(3), 291-321

These log messages provide detailed information on the process name that is called the API from the
wshqos.dll file. In both cases, the process name is PoC.exe, and the process id is either 0x970 or 0x283c. The
second step to manually analyzing whether a ShadowMove occurred is to search the message column for
the discovered process ids. Doing so returns 32 results and begins to build a process flow for executing
both processes: the results of this search can be seen in Figure 12.. An analyst, at this point, would note that
the process was created, attempted to duplicate objects and access objects being audited, and then exit. This
follows the operating procedure of ShadowMove, and upon closer inspection, if the process name is
unknown or running from a strange directory, an unwanted program is likely being executed within the
environment.

3 F G H J K L 2] [} a [3] R s T u
ruic - | Event EveniData Data Processld |~ | message El
450 | 2021-03- DESKTO Security OxbSe Anew process has been created

55¢ | 2021-03- DESKTO Securiny An attempt was made to duploate 3 handle to an abiect. Custorm AutoFilter ? %
655_| 2021-03- DESKTO) Security 0370 An attemptwas made 1o acoess an abject

659 An sttempt wss mads to duplicate = handle ta an bisct. Show rows where:

GED message

861 An sttemp andle to an chiset.

B62 An sttempt toa jisct contains ~ | oxavd ~
563 | 2021-03- DESKTO Securiy An sttemat was made (o duploate 3 handle to an cbiect.

6% | 2021-05 DESKTO Security 04370 An attempt was made 1o a: Oana ®or

865 | 2021-03- DESKTO) Security An sttempt wss mads to andle to an cbiset. contains <] [oxs3c =
566 An temp i

567 | 2021-03 DESKTO Securiy 0370 Aprocess has exied,

1286 | 2021-03 DESKTO Security OubJe Anew process has been created, L 2 e g ST 2 G e T

1288 | 2021-03- DESKTO Security An sttempt w s made to duplicate = handle to an objsct Use * to represent any series of characters

263 | 2021-03- DESKTO Seeurivy Da2ely An attempt was made 1o aceess an obizet,

1293 | 2021-03- DESKTO Security An sttemptw s made 1o duplicate 2 handle ta an obiset, Cancel
1234 | 2021-03 DESKTO Securiny 0x283¢ An atemptwas made 1o acoess an obiect

1295 | 202103 DESKTO Security An attemptwas made to duplicate 2 handle ta an bjsct.

1296 | 2021-03 DESKTO Security 03283¢ An sttempt wss mads 1o acoess an abject

1237 | 202103 DESKTO Security An sttemat was made (o duplicate 3 handle to an abiest.

1298 | 2021-03 DESKTO Security 0283¢ An attemptwas made o acoess an obiect

2021-03- DESKTO Se.

An attemp
An sttempt

andle to an obijest.

andle to an object.
jiect

1686 | 2021-03- DESKTO Security 0x370
1836_| 2021-03- DESKTO Security 052464
2017_| 2021-03- DESKTO) Security 0:283c
2600 | 2021-03- DESKTO Se [

2602 | 2021-03- DESKTO Security 042830

Figure 12. The ShadowMove Process ids are filtered and an analyst is able to view most steps of the
ShadowMove process by filtering down Windows Event Logs.

Once the process name and location are discovered, an analyst should sandbox the unknown application
and determine its purpose and whether it is malicious.

ShadowMove is a sophisticated piece of malware and, due to its programming, requires a high level of
manual analysis to determine what it is doing. However, an analyst can use the data processing techniques
outlined in this section to apply Windows auditing to specific DLLs, collect the pertinent log files, filter the
logs, and determine whether a ShadowMove may have occurred. By filtering in this manner, an analyst
could find file names and process ids to investigate further; however, without statically or dynamically
analyzing the code, it would be impossible to determine with complete certainty that ShadowMove

occurred.

Conclusions and Recommendations
This paper introduced traditional methods for lateral movement in Windows systems and well-known

defenses for protecting systems from malicious lateral movement. Likewise, the paper explains why
lateral movement is such a persistent issue and postulates that the most secure systems are non-
networked systems which is the only surefire way to stop lateral movement. However, this solution will
also significantly impede standard business practices. The authors also research new methods proposed
for lateral movement detection, including graph-based and machine learning-based models. Finally, the
paper presents ShadowMove, how it functions, and a new method for detecting ShadowMove, which has
not been detectable to general user’ s knowledge. If an analyst is armed with the knowledge of socket

duplication and how it can be used to duplicate network handles and inject anything into preexisting

318

Adv. Technol. 2022, 2(3), 291-321

TCP streams, the method that we propose will lead an analyst to an executable file for manual or
dynamic code analysis. Therefore, it is confirmed that ShadowMove is a legitimate threat and is excellent
at evading detection as it hardly touches the host operating system. Also, we were able to monitor API
calls during runtime, confirm that socket duplication is feasible and possible without setting off many
alerts, and determine a method for detecting ShadowMove as it touches the host operating system.
Likewise, we developed a manual filtering process using nothing but Windows Auditing and Event Logs
to find a process name and process ID that may be conducting a ShadowMove. While not the most
elegant solution, it functions as intended and will detect ShadowMove if the analyst knows what to look
for. The key to ensuring success in detecting a ShadowMove lies in auditing the correct files. In addition,
administrators should ensure they are monitoring for program access to specific DLLs related to socket
duplication, library loading, and network communications. While these may be noisy and generate
numerous logs, if a ShadowMove is considered present in the environment, the log generation may be the

lynchpin in a system that either detects this novel lateral movement or does not.

Future Works
Creating a custom alert based on the wshqos.dll file access and subsequent handle manipulation events

generated by the same host process would be a method for automating some detection processes. This is a
ruleset that we plan to implement in a SIEM solution in the future. If the DLL access closely mirrors the
access outlined in this research, it is likely that some method of ShadowMove is being committed. Another
area we did not focus on in this research is comparing the log generation with numerous other programs
to determine how many false positives may exist in an enterprise-level system. Since our research
environment was only a single virtual machine running extraordinarily little software, this method may
generate more false positives than we anticipated. The authors would like to spend more time studying in
more feature-rich environments to determine whether my method will function as intended or generate
multiple false positives. One of the major drawbacks of detecting ShadowMove is that it requires the
analyst to determine exactly which API calls were made from specific DLLs. Since the attack uses specific
functions from specific DLLs, the attack has a unique signature. However, since the signature is also based
on standard Windows protocols used daily, differentiating a malicious ShadowMove from benign
processes can be extremely tedious and difficult. Once ShadowMove is suspected, an analyst should
manually observe the file during runtime to determine whether socket duplication occurred using specific
function calls from DLLs. Solutions to investigate API calls exist but are typically manual processes. As
malware becomes more sophisticated and attackers increasingly are using built-in operating system
functions to execute attacks and bypass traditional Antivirus solutions, we believe it will be important in
the future to continuously monitor specific function calls from DLLs. Traditional SIEM tools can monitor
logs, but a solution that could hook DLL calls at runtime and log API calls from those DLLs would speed
up analysis of potentially malicious software that is currently not alerted on.

Furthermore, incorporating some version of deep-process analysis with a machine learning architecture
like the one proposed by Holt et al. could lead to significantly more secure systems. While the research we
undertook focuses on a specific attack developed by Niakanlahiji et al., the methods used to detect the
malicious takeover and utilization of Windows DLLs are not exclusive to this specific attack. Shadow Move
is a specific and functional instance of DLL code being packaged and hijacked for malicious purposes. Still,

similar methodologies are likely being utilized by other malware. They could be used to execute

319

Adv. Technol. 2022, 2(3), 291-321

ransomware and other malicious software undetected on Windows Systems by taking advantage of this
Windows feature. Additional work should be conducted to detect the hijacking of DLLs through packaged
code.

Furthermore, the Windows operating system provides an auditing package that is robust and able to collect
all the necessary information to detect these types of attacks. However, the requisite logs necessary for
detection are not enabled by default on the Windows operating system. Work should be completed to
educate analysts on the methodologies utilized by programs like Shadow Move and how to best leverage
the Windows auditing platform to collect the information necessary to make an informed decision. Without
altering the default values in the Windows Auditing Platform, these attacks will go unnoticed and be
unsearchable either in the auditing platform or in a SIEM solution. Finally, additional research should be
completed on other malware variants and organizations to determine if DLL hijacking and manipulating
existing TCP streams have occurred. While it is unknown whether these attacks have been successfully
conducted in the production networks, the proof-of-concept code studied in this research proves that the
attack vector is feasible for hijacking connections, moving laterally, and doing so undetected. Therefore, it
is important to continue to study this method of DLL packaging, hijacking, and manipulation to determine

its utility and functionality in other attack frameworks.

References

[1] MITRE, https://attack.mitre.org/matrices/enterprise/windows/, accessed: Nov,2020.

[2] S. Shelley, Phishlabs by HelpSystems, https://info.phishlabs.com/blog/phishing-number-1-data-breaches-lessons-verizon/,
accessed: Nov,2020.

[3] Verizon, https:/[www.verizon.com/business/en-gb/resources/reports/2020-data-breach-investigations-report.pdf, accessed:
Nov,2020.

[4] V. Lynch, hashedout by The SSL Store, https://www.thesslstore.com/blog/2013-target-data-breach-settled, accessed:
Oct,2020.

[5] R. Weiner, The Washington Post, https://www.washingtonpost.com/local/public-safety/hacker-linked-to-target-data-
breach-gets-14-years-in-prison/2018/09/21/839fd6b0-bd17-11e8-b7d2-0773aale33da_story.html, accessed: Nov,2020.

[6] B.A. Powell, The Epidemiology of Lateral Movement: Exposures and Countermeasures with Network Contagion
Models., Journal of Cyber Security Technology, 2019, 4(2), 1-39

[7] MITRE, https://attack.mitre.org/tactics/TAO008/, accessed: Nov,2020.

[8] D. Han, A. Li, D. Rugerio, L. Chen, S. Xu, 22 Sept. 2020, Microsoft Documentation, https://docs.microsoft.com/en-
us/troubleshoot/windows-client/deployment/dynamic-link-library/, accessed: Nov,2020.

[9] P. Pedemakar, EDUCBA, https://www.educba.com/what-is-smb/, accessed: Oct,2020.

[10] Q. Radich, D. Coulter, M. Satran, Microsoft Documentation, https://docs.microsoft.com/en-

us/windows/win32/termserv/remote-desktop-protocol/, accessed: Nov,2020.

[11] D. Marshall, E. Graff, Microsoft Documentation, https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest,
accessed: Mar,2021.

[12] A. Niakanlahiji, J]. Wei, Md. R. Alam, Q. Wang, B.T. Chu, ShadowMove: A Stealthy Lateral Movement Strategy In
Proceedings of The 29th USENIX Security Symposium, 12 Aug 2020.

[13] CVE Details The ultimate security vulnerability datasource, https://wwuw.cvedetails.com/cve/CVE-2017-0143,
accessed: Mar,2021.

[14] Q. Liu, J. Stokes, R. Mead, T. Burrell, I. Hellen, J. Lambert, A. Marochko, W. Cui, Latte: Large-Scale Lateral
Movement Detection In Proceedings of IEEE Military Communications Conference (MILCOM) 2018 Track 3 - Cyber
Security and Trusted Computing, Los Angeles, California, United States of America, 29-31 Oct 2018.

[15]R. Holt, S. Aubrey, A. DeVille, W. Haight, T. Gary, Deep Autoencoder Neural Networks for Detecting Lateral
Movement in Computer Networks. In Proceedings on the International Conference on Artificial Intelligence(ICAI),
Xuzhou, China , 22 Aug 2019.

320

Adv. Technol. 2022, 2(3), 291-321

[16] H. Sidati, B. Saket, N. Memon, Detecting Malicious Logins in Enterprise Networks Using Visualization, In
Proceedings of IEEE Symposium on Visualization for Cyber Security (VizSec), 24 Oct 2016.

[17] A. Bohara, M.A. Noureddine, A. Fawaz, W.H. Sanderse, An Unsupervised Multi-Detector Approach for
Identifying Malicious Lateral Movement, In Proceedings of IEEE 36th Symposium on Reliable Distributed Systems
(SDRS), Hong Kong, Hong Kong, 26-29 Sep 2017.

[18] Y. Yu,]. Long, Z. Cai, Network Intrusion Detection through Stacking Dilated Convolutional Autoencoders,
Security and Communication Networks. 2017, 2017, 1-10.

[19] H. Liu, B. Lang, Network Intrusion Detection through Stacking Dilated Convolutional Autoencoders, Applied
Sciences. 2019, 9(20) 4396, 1-28.

[20] A.M. Chandrasekhar, K. Raghuveer, Intrusion Detection Technique by using K-means, Fuzzy Neural Network
and SVM classifiers, In Proceedings of 2013 International Conference on Computer Communication and Informatics
(ICCCI), 4-6 Jan 2013.

[21] H. Chen, L. Jiang, Preprint, arXiv preprint, arXiv:1904.02426. DOI: 10.48550/arXiv.1904.02426, submitted: Apr,
2019.

[22] P. Gogoi, D.K. Bhattacharyya, B. Borah, J.K. Kalita, MLH-IDS: A Multi-Level Hybrid Intrusion Detection Method,
The Computer Journal. 2013, 57(4), 602-623.

[23] A. Pektas, E. Basaranoglu, Practical Approach for Securing Windows Environment: Attack Vectors and
Countermeasures, International Journal of Network Security & Its Applications (IINSA). 2017, 9(6), 13-27.

[24] T. Bai, H. Bian, A.A. Daya, M.A. Salahuddin, N. Limam, R. Boutaba, A Machine Learning Approach for RDP-
Based Lateral Movement Detection, In Proceedings of 2019 IEEE 44" Conference on Local Computer Networks (LCN),
14-17 Oct 2019.

[25] M. Ussath, D. Jaeger, C. Feng, C. Meinel, Advanced Persistent Threats: Behind the Scenes, In Proceedings of 2016

Annual Conference on Information Science and Systems (CISS), 16-18 Mar 2016.

[26] G. Kaiafas, G. Varisteas, S. Lagraa, R. State, C.D. Nguyen, T. Ries, M. Ourdane, Detecting Malicious
Authentication Events Trustfully, In Proceedings of NOMS 2018-2018 IEEE/IFIP Network Operations and
Management Symposium, Taipei, Taiwan, 23-27 Apr 2018.

[27] H. Siadati, N. Memon, Detecting Structurally Anomalous Logins within Enterprise Networks, In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security — CCS ‘17, Dallas, Texas, United States of
America, 30 Oct — 03 Nov 2017.

[28] S.P. Liew, S. Ikeda, Detecting Adversary Using Windows Digital Artifacts, In Proceedings of the 2019 IEEE
International Conference on Big Data (Big Data), Los Angeles, California, United States of America, 09-12 Dec 2019.

[29] M. Fujimoto, W. Matsuda, T. Mitsunaga, Detecting Abuse of Domain Administrator Privilege Using Windows
Event Logs, In Proceedings of the 2018 IEEE Conference on Applications, Information and Network Security (AINS), 21-
22 Nov 2018.

[30] S. Abe, First Improving Security Together, https://wwuw.first.org/resources/papers/conf2016/FIRST-2016-105.pdf,
accessed: Oct 2020.

[31] S. Tomonaga, JPCert/CC Eyes, https://blogs.jpcert.or.jp/en/2016/01/windows-commands-abused-by-attackers.html,

accessed: Oct 2020.

[32]]. Oh, First Improving Security Together, https://www.first.org/resources/papers/conference2014/first 2014 - oh-

junghoon - forensic_analysis apt lateral movement in windows environment.pptx, accessed: Oct 2020.

[33] I. Plotnik, T.A Be’ery, M. Dolinsky, O. Plotnik, G. Messerman, S. Krigsman, System (Microsoft Israel Research
and Development 2002 Ltd), US59729538B2, 2017.

[34] A. Dulkin, L. Lazarovitz, (CyberArk Software Ltd), US20160330220A1, 2018.

[35] T. Hudek, C. McClister, Cymoki, Y. Suzuki, A. Viviano, K. Varadharajan, E. Graff, Komsorg, Prashantchahar, S.
Resnick, iudezeGit-zz, udezeGit, Microsoft Documentation, https://docs.microsoft.com/en-us/windows-
hardware/drivers/download-the-wdk. Accessed: Mar 2021.

[36] API Monitor, https://apimonitor.com, accessed: Mar 2021.

[37] Datadog Infrastructure and Application Monitoring, https://docs.datadoghq.com/agent, accessed: Mar 2021.

[38] D. Simpson, A. Lobo, H. Yoshioka, M.H. Avedon, Onur, J. Hall, A.M. Gorzelany, A. Bichsel, Microsoft
Documentation, https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/basic-audit-object-access,
accessed: Mar 2021.

321

https://www.first.org/resources/papers/conference2014/first_2014_-_oh-_junghoon_-_forensic_analysis_apt_lateral_movement_in_windows_environment.pptx
https://www.first.org/resources/papers/conference2014/first_2014_-_oh-_junghoon_-_forensic_analysis_apt_lateral_movement_in_windows_environment.pptx

Adv. Technol. 2022, 2(3), 291-321

[39] D. Simpson, A. Lobo, Onur, J. Hall, A.M. Gorzelany, A. Bichsel, N. Schonning, Microsoft Documentation,
https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/basic-audit-process-tracking, accessed: Mar
2021.

[40] Datadog Infrastructure and Application Monitoring, https://docs.datadoghq.com/integrations/active_directory/,

accessed: Mar 2021.

322

