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Abstract 

 

Iris localization is vital for many applications such as augmented reality (AR), mobile eye tracking, tracking visual 

focus of drivers, diabetic retinopathy screening, and applications in human-computer interaction. Iris localization is 

still challenging in real-time applications, with low-quality eye images due to many reasons such as natural light 

reflections, thick eyelashes, fallen hair strips on the eye, and various illumination conditions. However, quality images 

under a controlled environment, such as Near Infrared images, solve these issues up to some level. Even though 

Learning-based algorithms ensure a high result in iris localization, such methods take much time and high resource 

usage to annotate and train bulk data. The non-learning-based method is advantageous since it does not require high 

resource usage or time to annotate and train data like learning-based methods. Considering all the above scenarios, we 

propose a non-learning-based algorithm that localizes the iris area using image enhancements and maximum black 

pixel count. The proposed algorithm takes face images as input, and the eyes are localized. In the following steps, a 

coarse iris center is found, and next, the fine iris center is extracted using the maximum black pixel count that belongs 

to a particular radius. The proposed algorithm is validated on our own dataset collected using a standard webcam, 

GI4E, and Extended YALE B face datasets. The accuracy was recorded as 96.67%, 88.04%, and 77.57%, respectively, 

when the maximum normalized localization error ≤0.05.  

Keywords: Contrast Limited Adaptive Histogram Equalization, Eye-tracking, Image enhancements, non-learning-

based methods, Iris localization  

 

Introduction 

Iris localization means extracting the iris center and its boundary. Iris localization is an important and 

emerging topic in the field of gaze tracking [1, 2] nowadays. For example, iris localization is used in gaze 

tracking for applications such as virtual reality gaming platforms [3], visual focus of attention tracking for 

student engagement [4], drivers [5, 6], and pilots [7].  In addition to this, the medical domain is also invaded 

by iris tracking for the diagnosis of autism spectrum disorder and diabetic retinopathy screening. 

Moreover, gaze-controlled systems as aids for the disabled are also emerging [8]. Identity authentication 
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[9, 10], via iris recognition, is also becoming more prominent since the approach is more robust than facial 

IDs and fingerprints. Mostly, pupil center detection is used in gaze tracking systems since the gaze point is 

affected by the pupil center. However, in the visible spectrum (VS), it is challenging to distinguish the 

difference between the pupil and the iris in dark eyes. Therefore, the assumption that the iris and the pupil 

are concentric is made. In such cases, iris localization is achieved instead of pupil localization. This is 

discussed in detail in the related works section.  
 

The importance of iris localization and application in the field is increasing gradually due to the reliability 

of the systems that use iris localization. For instance, identity authentication systems with iris are worth 

more than using fingerprints or face IDs since iris has stable features for an individual's lifetime. In addition 

to this, the medical sector is using iris localization applications for various purposes, such as diabetic 

retinopathy screening, identifying and analyzing autism spectrum disorder in early childhood, analyzing 

the visual focus of attention of babies, and some applications in neuroscience. Most of the applications in 

iris localization require real-time operations.  

 

However, it is quite challenging to achieve real-time iris localization due to many factors, which can be 

divided into a few categories: nature of the eye, illumination conditions and specular reflections, eye 

makeup, and real-world challenging situations. Under the nature of the eye, partially opened eyes [11, 12] 

and a high density of eyelashes can be mentioned. The eye area becomes blurry due to the illumination and 

specular reflections which lead to hide the features of the eye [13]. Mascaras, contact lenses, and heavy eye 

shadows are different types of eye makeup that can obstruct iris localization. In addition to these situations, 

fallen hair strips on the eye, occluded eyes due to eyeglasses, rotated eyes due to different head poses, and 

blurred eyes due to eye saccades are another set of challenges that occur when the application runs in real-

time [14]. 

 

Iris localization can be accomplished using visible spectrum (VS) or near-infrared (NIR) images. Eye images 

can be obtained using intrusive and non-intrusive methods [13]. While intrusive methods use a camera 

fixed on a head-mounted device to capture the eye directly, non-intrusive methods use an external camera 

to capture the face images, and then the eye images are extracted.  

 

Some iris localization applications can use a controlled environment since it helps to increase the quality of 

the eye image, hence the accuracy of the iris localization process. This method is suitable for most medical 

applications since they intend to diagnose a disease in an indoor environment. However, the iris 

localization application that needs to be operated to identify the driver's drowsiness, identity 

authentication, and students’ attention tracking cannot be expected to operate in a controlled environment. 

As a solution to that, NIR cameras can be used for the systems. However, it drastically increases the cost of 

the system while decreasing the prevalence of applications.  

 

Iris localization methods can be divided into two fundamental categories: learning-based and non-

learning-based iris localization methods. Even though learning-based algorithms offer high accuracy in iris 

localization, they require a substantial amount of training data. In addition, the process of data annotation 

consumes a great deal of time, and training requires a substantial amount of computing resources. Non-
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learning-based algorithms circumvent the problems mentioned above, and such low-cost iris localization 

algorithms aid in expanding the field's applications. Therefore, we concentrated on developing an iris 

localization algorithm for VS images based on a coarse-to-fine scheme that does not rely on learning. 

 

Related Works 
 

Iris localization is a more vital topic in this era. However, researchers have focused on tracking the iris or 

pupils for different purposes. The center of the pupil is associated with the gaze point as mentioned before. 

However, the center point of the pupil cannot always be extracted from the eye due to some reasons such 

as, dark eyes in the visible spectrum do not help to distinguish the iris and the pupil. In that case, the 

assumption, the iris and pupil are concentric is made, and instead of the pupil localization, iris localization 

is performed. Due to this reason, some of the related works we have discussed here belong to pupil 

localization and some are related to iris localization. However, at the application level, both are important 

and can be used to track the gaze point. Furthermore, the section is divided into two basic categories which 

we can clearly understand: learning-based iris localization or pupil localization schemes, and non-learning-

based iris localization or pupil localization schemes. 

  

Conformal geometric algebra [15], starburst algorithm [16], image in paint technology [17], Circular Hough 

Transform (CHT) [18], and circle fitting with advanced thresholding processes [19] come under the non-

learning-based iris/pupil localization schemes.  The following section discusses the non-learning-based 

pupil and iris localization algorithms proposed by the research community in terms of the challenges they 

have addressed in their study.  

  

The reduction in processing time helps to optimize the pupil tracking algorithms while creating room for 

real-time operation. In order to achieve that, Ma et al., (2020) proposed a fast iris localization algorithm for 

noisy images based on Conformal Geometric Algebra (CGA) [20]. The edge points were generated using 

the Sobel edge detector. Iris (limbic) and pupil boundaries are found using the CGA circle detection 

algorithm. Since the proposed algorithm detects pupil and limbic boundaries in the same step, it avoids 

the additional time consumed by traditional eye localization algorithms. Further, the experimental results 

show that the CGA-based iris localization scheme is insensitive to noise and can be used in real-time iris 

localization applications, which is the most vital advantage of the algorithm. Further, Sundaram et al., 

(2011) proposed a fast iris localization scheme based on edge point detection and CHT [21]. The algorithm 

focuses on localizing the inner and outer boundaries of the iris. Before applying edge point detection, the 

iris and pupil are identified using a bounding box for the iris and pupil. This step leads to fast iris 

localization since it reduces the searching space for the Hough transform. However, the algorithm is not 

good at localizing irises in images taken under different illumination conditions and images with noise.  

 

In addition to the noise-robust CGA circle detection algorithm, the method proposed by Manuri et al. 

(2020), which is an extension of the starburst algorithm, can detect pupils in the infrared (IR) spectrum [16]. 

The algorithm is named Pupil Detection after Isolation and Fitting (PDIF), and the proposed algorithm 

focuses on noise reduction, which was achieved using a weighted sum with an equalized image instead of 

a Gaussian filter. PDIF brings better precision than the Starburst algorithm and provides a considerably 
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faster operation than the ExCuSe [22] and ElSe [23] algorithms. Even though those algorithms overcome 

the Starburst’s precision limitation, they show a computational delay, which makes them unsuitable for 

real-time usage.  

 

The change in pupil or iris size due to the distance between the user and the camera is a practical challenge 

in pupil localization [24]. However, the method proposed by Zhang et al., (2020) is based on oblique 

projection, and it uses a binocular camera (calibrated according to Zhang’s calibration method [25]) that 

does not change the size of the pupil or iris due to the distance from the user to the camera [24]. The 

algorithm is based on relative linear density based on positive and negative oblique projections (PNOP). 

Results show that the algorithm is robust to the presence of glasses and different illumination changes in 

the images. 

 

Low-cost pupil and iris localization algorithms and setups surpass the other algorithms since they increase 

the number of applications in different domains. Aharonson et al., (2020) proposed a low-cost setup that 

improves gaze estimation using the vestibulo-ocular reflex [26]. The system consists of a low-cost webcam 

to record a single eye. The pupil detection algorithm is based on convex hull fitting, which is the most petite 

convex shape enclosing a given shape, and it is the most miniature convex set that contains the shape. In 

addition to that Lee et al., (2020) proposed a gaze tracking system using a low-cost head-mounted device 

that consists of a small endoscope camera, an IR light, and a mobile phone [27]. Before tracking the pupil, 

captured images were subjected to pre-processing. Next, a flood fill algorithm removes the unnecessary 

black part of the image. Multi-thresholding was applied to get the pupil in the image. After the necessary 

steps, ellipse fitting was used for the image, and the pupil center was extracted. The method has achieved 

high accuracy in pupil detection. 

 

Low-quality images are common in real-time iris localization schemes [28 - 30]. Further, the applications 

that focus on implementing in general laptop computers get low-quality images as inputs, and this method 

is vital for such applications. Dai et al., (2020) proposed a pupil localization algorithm based on energy 

maps with the image in paint technology and post-processing correction [17].  The algorithm focuses on 

increasing the pupil localization efficiency of low-quality images in practical applications. The average 

processing time was 50 milliseconds for the proposed algorithm, which was significantly less than the State-

Of-The-Arts (SOTA) methods, and the algorithm is suitable for real-time applications. 

 

Algorithms ‘resource utilization is another important matter to consider when developing iris/pupil 

localization algorithms. Navaneethan & Nandhagopal (2021) proposed a resource-efficient pupil 

localization scheme based on average black pixel density since most approaches such as CNN-based, CHT-

based, and IDO-based methods lead to inefficient hardware usage of Field Programmable Gate Arrays 

(FPGA) [31]. Since global thresholding is not good enough for pupil detection, double thresholding was 

proposed in the algorithm. The proposed algorithm achieved 98% detection accuracy while consuming 

30%-40% of resources compared to the other existing methods. 
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In the following section, we focus on discussing the learning-based pupil and iris localization algorithms. 

Learning-based pupil localization algorithms are cost in terms of time taken to annotate, collect bulk data, 

and resource utilization. Shi et al., (2021) proposed a pupil detection scheme based on neural networks. The 

algorithm consists of two stages: pupil detection and motion prediction. In the pupil detection stage, 

modified V_net [32], which was initially proposed by Milletari et al., (2016), was used [33]. In the same way 

as YOLO, pupil parameters (center coordinates: x,y, and radius-r) are obtained via a single neural network 

using the output of V_net. The position of the pupil was tracked using Long-Short-Term Memory (LSTM) 

[34].  

 

Poulopoulos & Psarakis (2022) proposed a pupil localization scheme called PupilTAN, based on deep 

networks, and it performs image-to-heatmap translation via regression instead of using the paired ground 

truth to train an image-to-heatmap localizer [12]. The proposed scheme uses randomly created heatmaps 

from the same pdf, and it is estimated using a small number of ground truth data points and heatmaps 

which are treated as a 2D Gaussian kernel with a constant standard deviation. The proposed adversarial 

framework makes it less independent of labeled data, and the accuracy was also significantly improved. 

Lertsiravarameth & Taeprasartsit (2020) proposed a pupil localization scheme based on multiscale and 

nonlinearity convolutional regression in typical light conditions for eyes with a dark iris and pupil. The 

proposed method uses CNN to estimate the center of the pupil using regression [35]. In real-world 

applications, automatic eye cropping is not good enough to get precise and accurate cropped eyes since 

those appear on different scales. This issue was alleviated using a network architecture that concurrently 

utilizes features from multiple convolutional layers instead of using features from the last two 

convolutional layers. Random shifting and image flipping were used, and data augmentation methods 

were used to avoid expensive, extensively annotated data. 

 

Wu et al., (2021) proposed an algorithm to track the pilot’s pupil center using spherical Haar wavelets and 

deep learning [7]. Wu et al., (2021) developed a deep contractive autoencoder network (DCAEN) using the 

feature learning ability of deep learning. As the top-level classifier of the deep higher CAE network 

(DHCAEN), a fuzzy Gaussian Support Vector Machine (FGSVM) was proposed. FGSVM is better for 

handling noise and pupil detection schemes with nonlinear system identification problems. 

 

Han et al., (2020) proposed a robust pupil center detection algorithm based on CNN with Shape-Prior Loss 

[36]. The algorithm takes NIR eye images as the input and segments the pupil as a classification problem. 

For the segmentation, the U-Net model was used. The connected component (CC) analysis finds the largest 

blob, and it is considered the pupil area. The center of the pupil is found using the center of mass technique 

for the largest blob chosen. When the segmented area does not exist, the pupil area is selected as the highest 

sigmoid output pixel location or the previous frame’s pupil. The loss function for the segmentation is newly 

proposed and called convex shape-prior loss, and it shows robustness to noise. The proposed method 

performs and localizes pupils better than the traditional regression method to extract the pupil center. 

 

Webcam images are low-quality images which makes the iris detection process challenging. However, such 

algorithms can extend the number of applications in different domains because the deployment cost is low. 
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Larumbe-Bergera et al., (2021) proposed a pupil detection scheme based on CNNs and webcam images 

[37]. The pupil center manual labeling process was done, and it resulted in a novel database named Pupil-

PIE (PUPPIE) with 1791 annotated images [38]. ResNet-50 was pre-trained with the ImageNet dataset for 

extracting pupil center coordinates. This algorithm used a multi-task cascaded framework based on CNNs 

(MTCNN) to detect the eye region. The network architecture of this algorithm is the same as the one used 

in DeepLabCut [39]. The network in the algorithm is followed by a global average pooling layer and four 

fully connected layers with an ELU activation function to compute pupil center coordinates.  

 

Contribution of the Current Research 
 

Even though many algorithms have been proposed to address different challenges in iris localization, 

handling low-quality images in the visible spectrum still has room for development. We developed this 

algorithm with the intention of proposing a low-cost iris localization using low-quality images using a web 

camera. Segmentation-based machine learning algorithms need a bulk of segmented images to train the 

model. It takes time and is not resource-efficient since the training process needs GPUs for better operation. 

To avoid such requirements in learning-based methods, the non-learning-based method was focused. In 

the following section, we focus on the details of the setup and algorithm. 

 

Materials and Methods 

 

We created our own database of 945 face images using a Logitech C930E webcam and 9 subjects. In addition 

to our own database, since we needed to check the validity of the algorithm under different environmental 

conditions, we used GI4E [40] and Extended YALE Face Database B [41] to validate the algorithm.  

 

Self-made Dataset 

 

Our dataset was collected under the visible spectrum in a less controlled environment, with the user 

positioned 30 cm to 70 cm from the screen. The webcam was positioned on the top of the screen of the 

desktop computer. The user was free to have different head movements, such as rotations, and different 

facial expressions. Nine subjects were in the study and 105 of the photos of each subject were taken by 

looking at random positions on the screen. 

  

GI4E and Extended YALE Face Databases B 

 

GI4E, and Extended YALE face databases B were selected as two other datasets to test the accuracy of the 

algorithm. The GI4E dataset contains many challenging eye images captured in an indoor environment. It 

includes faces wearing spectacles, high ethnicity in subjects, and images with partially closed eyes. 

Extended YALE face databases B is a challenging database since it includes images with different 

illumination conditions. However, the GI4E and Extended YALE face databases B were initially analyzed 

before the sampling procedure and identified dark face images where iris texture could not be 

distinguished. We manually excluded such face images from the database, and the stratified sampling 

method was used to draw an unbiased representative sample. 
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Figure 1 is the flowchart of the proposed algorithm for iris center localization. The summary of the 

algorithm is as follows. The input face image was given to the algorithm, to detect the face and then 

extracted the eye regions using landmarks surrounding the eye. Only the extracted eye mask was then 

subjected to morphological operations and flood filling to eliminate specular reflections and close the holes 

in the iris region. Next, the coarse center of the iris was extracted using the lowest vertical and horizontal 

intensity points. Finally, the fine iris center was extracted using the maximum black pixel count algorithm.  

 

The proposed algorithm is based on a coarse-to-fine scheme and can be divided into five stages: face image 

preprocessing; face tracking and eye detection; eye image preprocessing; coarse iris center extraction; and 

circle fitting using the maximum black pixel count.  

 

Figure 1. The flow diagram of the proposed algorithm to localize the iris center. 

The Detailed Design Process of the Algorithm  

 

Stage 1: Face detection:  

 

The resized input face images (refer to Figure 2 (a) for an example) were subjected to enhancements using 

gamma correction and contrast-limited adaptive histogram equalization (CLAHE) [42]. Further, the 

median filter was used to remove the noise and preserve the edges of the image. The Dlib 68 face landmark 

detector was used to detect the face in the input images. Refer to Figure 2 (b).  
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Figure 2. (a) Input face image to the algorithm, (b) Dlib 68 face landmark detector 

 

Stage 2: Eye detection  

 

We performed eye tracking with the help of the Dlib 68 face landmark detector for the images where the 

face was detected correctly. Left and right eyes were extracted using 36–41 and 42–47 landmarks, 

respectively, and each eye separately was pasted onto a mask to remove the effect of eyelids and eyelashes. 

Refer to Figure 3 to see the process of eye mask generation. The output of the stage is a segmented eye on 

a white mask.  

 

 

Figure 3. Generating left eye mask using 36-41 Dlib facial landmarks; left: left eye with eye landmarks, right: left eye mask 

 

Stage 3: Thresholding and flood filling algorithm 

 

We used the global thresholding process to binarize the image, and next, morphological operations and 

flood-filling operations were applied to the eye mask to reduce the effect of specular reflections and to close 

the holes in the iris region. Output from this step is a hole-filled binary image, 𝐼𝐻 . Refer to Figure 4.  

 

Figure 4. Hole-filled binary (left eye) image, 𝑰𝑯  

Stage 4: Extracting the coarse iris center  

 

In this stage, 𝐼𝐻  was horizontally and vertically scanned separately to find the horizontal and vertical lowest 

intensity points on the eye image. The horizontal lowest intensity point is returned as the x coordinate of 
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the coarse iris center, and the vertical lowest intensity point is considered the y coordinate of the coarse iris 

center. The output of this stage is the coarse iris center coordinates (𝑥𝑐 , 𝑦𝑐). Refer to Figure 5.  

 

Figure 5. Coarse iris center, 𝒙𝒄, 𝒚𝒄 marked (intersection point for the vertical and horizontal lines) on the hole-filled left eye image 

Stage 5: Maximum black pixel count and circle fitting  

 

The maximum black pixel count method takes the hole-filled binary image (𝐼𝐻), the height of the open eye 

(h), and the coarse pupil center (𝑥𝑐 , 𝑦𝑐) as the inputs. Next, our method finds a circle that contains most of 

the black pixels while taking different 𝑥0, 𝑦0 , and 𝑟0 values. At the beginning of the iteration, 𝑥0, 𝑦0, are 

assigned to 𝑥𝑐 , 𝑦𝑐 and 𝑟0 to 0. For each iteration, it calculates the total black pixel count belonging to the 

circle defined by center 𝑥0, 𝑦0, and radius 𝑟0. Then, it records the maximum black pixel count with the 

relevant 𝑥0, 𝑦0, and 𝑟0 values. Refer to Algorithm 1. Refer to figure 6 to see the final output of the algorithm.  

 

Results and Discussion 

 

Non-learning-based iris localization algorithms remove the barriers of training and annotating bulk data, 

high resource usage to train, and operating in real time. Such barriers confine applications in the field of 

iris localization since they increase the cost of the system. Non-learning-based iris localization algorithms 

bring advantages to many low-cost applications while extending the number of applications in the field. 

The proposed algorithm tracks the iris center using a coarse-to-fine scheme. The algorithm is simple, and 

it counts the number of black pixels included in a particular circle and decides whether it contains the 

maximum black pixel count or not. The proposed algorithm possesses the ability to localize the pupil center 

with high accuracy without training or annotating bulk data. Further, it uses resources efficiently and does 

not require any GPU for its operation. We evaluated the proposed algorithm using three databases: self-

made dataset, GI4E dataset, and Extended YALE face Database B. 

 

Algorithm evaluation is done using the following evaluation index, and the accuracy is depicted in Table 

1. Further, Table 2 shows the performance comparison between current pupil localization schemes and the 

proposed method. Where NL refers to non-learning-based algorithms and L refers to learning-based 

algorithms.  

 

Evaluation Index 

 

The maximum localized error, 𝑒𝑚𝑎𝑥 was calculated as the method proposed by Jesorsky et al., (2001) [43]. 

The equation to the 𝑒𝑚𝑎𝑥 can be defined as below.  

𝑒𝑚𝑎𝑥 =
𝑚𝑎𝑥(𝑒𝑙,𝑒𝑟 ) 

𝐷
   Equation 1 
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Figure 6. Final output of the maximum black pixel count algorithm  

Where 𝑒𝑙  is the Euclidean distance between the original and the estimated left eye centers and 𝑒𝑟 is the 

Euclidean distance between the original and the estimated right eye centers. D is the Euclidean distance 

between the original left and right eyes.  𝑒𝑚𝑎𝑥  is the ratio between the maximum value of absolute 

localization errors and the distance between two eyes.  

Algorithm Accuracy on Different Datasets 

According to the results obtained for our dataset, the algorithm shows its best performance when the 

images are taken in a less controlled environment. Similarly, the GI4E dataset returned its accuracy in a 

higher range than the extended YALE face Database B. 

Table 1. Iris localization accuracy obtained for different datasets 

Dataset Sample images 𝑒𝑚𝑎𝑥≤0.05 𝑒𝑚𝑎𝑥≤0.1 Average frame rate (fps) 

Our own dataset 60 96.67% 100% 0.027 

GI4E dataset 209 88.04% 98.56% 0.410 

Extended YALE face Database B 263 77.57% 94.68% 0.288 

 

Since the extended YALE face Database B was collected under different illumination conditions, the 

algorithm is susceptible to that in the thresholding process and recorded less accuracy in iris localization 

than the other two databases. However, it recorded more than 75% of maximum localization accuracy ≤

0.05. Moreover, in some cases, the algorithm can track the pupil center when the user has blue or less dark 

irises. According to Table 2, the proposed algorithm’s performance is good while working with 

uncontrolled visible spectrum images, and without using a GPU.  
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Algorithm MaxBlackPixelCount 

Input (𝐼𝐻  , 𝑥𝑐 , 𝑦𝑐 , ℎ) 

maxBlackCount=0 

for 𝑥0 in range (𝑥𝑐 − 20, 𝑥𝑐 + 20): 

for 𝑦0 in range (𝑦𝑐 − 20, 𝑦𝑐 + 20): 

   for 𝑟0 in range 7h/10: 

 circle_mask 𝐼𝐻(𝑥0, 𝑦0, 𝑟0) 

     𝑏𝑙𝑎𝑐𝑘𝑐𝑜𝑢𝑛𝑡 blackpixels(circle_mask) 

     If(maxBlackCount< 𝑏𝑙𝑎𝑐𝑘𝑐𝑜𝑢𝑛𝑡): 

       maxBlackCount= 𝑏𝑙𝑎𝑐𝑘𝑐𝑜𝑢𝑛𝑡 

       𝑥𝑐𝑖𝑟𝑐𝑙𝑒 = 𝑥0 

       𝑦𝑐𝑖𝑟𝑐𝑙𝑒 = 𝑦0 

       radius=𝑟0 

return 𝑥𝑐𝑖𝑟𝑐𝑙𝑒, 𝑦𝑐𝑖𝑟𝑐𝑙𝑒,radius  

 

Algorithm 1. Pseudo code of the proposed maximum black pixel count algorithm 

Running Time and Computational Complexity 

 

According to the pseudocode given (refer to algorithm 1), the computational complexity of the proposed 

algorithm is 𝑂(𝑛3), since it has two “inner for loops” inside the maximum black pixel count algorithm. The 

specified time complexity is not good for real-time operations. Further, according to Table 1, we have 

mentioned the average frame rate of the given algorithm. It is quite low since the time complexity is quite 

high. To use the algorithm in real-time applications, we focus on improving our algorithm while reducing 

computational complexity. It is described in the future works section below. 

 

Future works  

 

Even though the accuracy of the proposed algorithm was good, the frame rate is low for real-time iris 

localization. Therefore, we expect to improve the performance of the algorithms in terms of frame rate by 

combining the proposed method with an extension based on geometry. Further, a new thresholding 

process that does not depend on the different illumination conditions will be proposed to increase the iris 

localization accuracy.  
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Table 2. Performance comparison between current research and the proposed method 

Author 

Type of the 

algorithm 

(NL, L) 

Types of 

the 

images 

used 

GPU 

requirement 

Real time 

operation 
Accuracy 

Ma et al., (2020)  NL NIR No No More than 95.00% 

Manuri et al., (2020)  NL IR, VS Yes No Satisfactory results 

Zhang et al., (2020) NL VS Yes Yes Satisfactory results 

Aharonson et al., 

(2020) 
NL VS No Yes Satisfactory results 

Lee et al., (2020) NL IR No Yes 99.77% 

Dai et al., (2020) NL VS No Yes More than 84.00% 

Navaneethan & 

Nandagopal (2021) 
NL IR Yes No More than 98.00% 

Shi et al., (2021)  L NIR Yes No 81.00% 

Poulopoulos et al., 

(2022)  
L VS Yes Yes More than 96.00% 

Lertsiravarameth & 

Taeprasartsit (2020)  
L NIR Yes No Satisfactory results 

Wu et al.,  (2021)  L NIR No No 94.80% 

Han et al., (2020)  L IR Yes No 79.00% 

Larumbe-Bergera et 

al., (2021) 
L VS Yes No More than 99.00% 

Proposed NL VS No No More than 94.00% 

 

Conclusion 

 

Since the data annotation and training processes in learning-based iris localization algorithms are time-

consuming, therefore, a non-learning-based iris localization scheme is proposed to consume less storage 

and eliminate the need to train and annotate a vast amount of data. The proposed algorithm is a coarse-to-

fine scheme for localizing the iris using the maximum black pixel count. The algorithm is validated using 

our dataset acquired with a standard Logitech C930E webcam, the GI4E dataset, and the Extended YALE 

face database B. The iris localization algorithm shows good accuracy even with low-quality images under 

a less controlled visible spectrum and varying illumination conditions. 

 

 



Adv. Technol. 2024, 4(1), 73-87 
 

  
85 

 

Conflict of interest  

The authors declare that there is no conflict of interest.  

 

Acknowledgement  

This research was supported by the Science and Technology Human Resource Development Project, Ministry of 

Education, Sri Lanka, funded by the Asian Development Bank (Grant No. R1/SJ/06). Further, we would like to express 

our gratitude to all the individuals who participated in the data collection procedure and the authors of the GI4E 

dataset and Extended YALE Face Database B for making them publicly available for research purposes.  

 

References 

 

[1] B. Masse, S. Ba, and R. Horaud, “Tracking Gaze and Visual Focus of Attention of People Involved in Social 

Interaction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 11, Art. no. 11, Nov. 2018, doi: 

10.1109/TPAMI.2017.2782819. 

 

[2] M. Puurtinen, U. Hoppu, S. Puputti, S. Mattila, and M. Sandell, “Investigating visual attention toward foods in a 

salad buffet with mobile eye tracking,” Food Qual. Prefer., vol. 93, p. 104290, Oct. 2021, doi: 

10.1016/j.foodqual.2021.104290. 

 

[3] V. Clay, P. König, and S. König, “Eye Tracking in Virtual Reality,” J. Eye Mov. Res., vol. 12, no. 1, Art. no. 1, Oct. 

2021, doi: 10.16910/jemr.12.1.3. 

 

[4] S. Shilaskar, S. Bhatlawande, T. Gadad, S. Ghulaxe, and R. Gaikwad, “Student Eye Gaze Tracking and Attention 

Analysis System using Computer Vision,” in 2023 7th International Conference on Computing Methodologies and 

Communication (ICCMC), Erode, India: IEEE, Feb. 2023, pp. 889–895. doi: 10.1109/ICCMC56507.2023.10083874. 

 

[5] Q. Zhuang, Z. Kehua, J. Wang, and Q. Chen, “Driver Fatigue Detection Method Based on Eye States With Pupil and 

Iris Segmentation,” IEEE Access, vol. 8, pp. 173440–173449, 2020, doi: 10.1109/ACCESS.2020.3025818. 

 

[6] P. Kanade, F. David, and S. Kanade, “Convolutional Neural Networks(CNN) based Eye-Gaze Tracking System 

using Machine Learning Algorithm,” Eur. J. Electr. Eng. Comput. Sci., vol. 5, no. 2, Art. no. 2, Apr. 2021, doi: 

10.24018/ejece.2021.5.2.314. 

 

[7] E. Q. Wu, G.-R. Zhou, L.-M. Zhu, C.-F. Wei, H. Ren, and R. S. F. Sheng, “Rotated Sphere Haar Wavelet and Deep 

Contractive Auto-Encoder Network With Fuzzy Gaussian SVM for Pilot’s Pupil Center Detection,” IEEE Trans. Cybern., 

vol. 51, no. 1, pp. 332–345, Jan. 2021, doi: 10.1109/TCYB.2018.2886012. 

 

[8] E. Skodras, V. G. Kanas, and N. Fakotakis, “On visual gaze tracking based on a single low cost camera,” Signal 

Process. Image Commun., vol. 36, pp. 29–42, Aug. 2015, doi: 10.1016/j.image.2015.05.007. 

 

[9] K. W. Bowyer, K. Hollingsworth, and P. J. Flynn, “Image understanding for iris biometrics: A survey,” Comput. Vis. 

Image Underst., vol. 110, no. 2, Art. no. 2, May 2008, doi: 10.1016/j.cviu.2007.08.005. 

 

[10] Saad, “Accurate and fast pupil localization using contrast stretching, seed filling and circular geometrical 

constraints,” J. Comput. Sci., vol. 10, no. 2, Art. no. 2, Feb. 2014, doi: 10.3844/jcssp.2014.305.315. 

 

[11] F. Jan and N. Min-Allah, “An effective iris segmentation scheme for noisy images,” Biocybern. Biomed. Eng., vol. 40, 

no. 3, Art. no. 3, Jul. 2020, doi: 10.1016/j.bbe.2020.06.002. 

 

[12] N. Poulopoulos and E. Psarakis, “DeepPupil Net: Deep Residual Network for Precise Pupil Center Localization:,” 

in Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and 

Applications, Online Streaming, --- Select a Country ---: SCITEPRESS - Science and Technology Publications, 2022, pp. 



Adv. Technol. 2024, 4(1), 73-87 
 

  
86 

 

297–304. doi: 10.5220/0010777900003124. 

 

[13] H. R. Chennamma and X. Yuan, “A Survey on Eye-Gaze Tracking Techniques,” ArXiv13126410 Cs, Dec. 2013, 

Accessed: Aug. 03, 2020. [Online]. Available: http://arxiv.org/abs/1312.6410 

 

[14] M. Abbasi and M. R. Khosravi, “A Robust and Accuracte Particle filter based,” J. Grid Comput., vol. 18, no. 2, Art. 

no. 2, Jun. 2020, doi: 10.1007/s10723-019-09502-1. 

 

[15] P. Chen, Y. Hu, and F. Yang, “A conformal geometric algebra method for virtual hand modeling and interaction,” 

EURASIP J. Image Video Process., vol. 2018, no. 1, Art. no. 1, Dec. 2018, doi: 10.1186/s13640-018-0318-2. 

 

[16] F. Manuri, A. Sanna, and C. P. Petrucci, “PDIF: Pupil Detection After Isolation and Fitting,” IEEE Access, vol. 8, pp. 

30826–30837, 2020, doi: 10.1109/ACCESS.2020.2973005. 

 

[17] L. Dai, J. Liu, Z. Ju, and Y. Gao, “Iris Center Localization Using Energy Map With Image Inpaint Technology and 

Post-Processing Correction,” IEEE Access, vol. 8, pp. 16965–16978, 2020, doi: 10.1109/ACCESS.2020.2966722. 

 

[18] Q. Li and M. Wu, “An Improved Hough Transform for Circle Detection using Circular Inscribed Direct Triangle,” 

in 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 

Oct. 2020, pp. 203–207. doi: 10.1109/CISP-BMEI51763.2020.9263665. 

 

[19] P. Bonteanu, A. Cracan, R. G. Bozomitu, and G. Bonteanu, “A Robust Pupil Detection Algorithm based on a New 

Adaptive Thresholding Procedure,” in 2019 E-Health and Bioengineering Conference (EHB), Nov. 2019, pp. 1–4. doi: 

10.1109/EHB47216.2019.8970070. 

 

[20] L. Ma, H. Li, and K. Yu, “Fast iris localization algorithm on noisy images based on conformal geometric algebra,” 

Digit. Signal Process., vol. 100, p. 102682, May 2020, doi: 10.1016/j.dsp.2020.102682. 

 

[21] R. M. Sundaram, B. C. Dhara, and B. Chanda, “A Fast Method for Iris Localization,” in 2011 Second International 

Conference on Emerging Applications of Information Technology, Kolkata, India: IEEE, Feb. 2011, pp. 89–92. doi: 

10.1109/EAIT.2011.18. 

 

[22] W. Fuhl, T. Kübler, K. Sippel, W. Rosenstiel, and E. Kasneci, “ExCuSe: Robust Pupil Detection in Real-World 

Scenarios,” in Computer Analysis of Images and Patterns, vol. 9256, G. Azzopardi and N. Petkov, Eds., in Lecture Notes 

in Computer Science, vol. 9256. , Cham: Springer International Publishing, 2015, pp. 39–51. doi: 10.1007/978-3-319-

23192-1_4. 

 

[23] W. Fuhl, T. C. Santini, T. Kuebler, and E. Kasneci, “ElSe: Ellipse Selection for Robust Pupil Detection in Real-World 

Environments,” ArXiv151106575 Cs, Nov. 2015, Accessed: Feb. 22, 2022. [Online]. Available: 

http://arxiv.org/abs/1511.06575 

 

[24] J. Zhang, G. Sun, K. Zheng, and S. Mazhar, “Pupil Detection Based on Oblique Projection Using a Binocular 

Camera,” IEEE Access, vol. 8, pp. 105754–105765, 2020, doi: 10.1109/ACCESS.2020.3000063. 

 

[25] W. Burger, “Zhang’s Camera Calibration Algorithm: In-Depth Tutorial and Implementation,” 2016, doi: 

10.13140/RG.2.1.1166.1688/1. 

 

[26] V. Aharonson, V. Y. Coopoo, K. L. Govender, and M. Postema, “Automatic pupil detection and gaze estimation 

using the vestibulo-ocular reflex in a low-cost eye-tracking setup,” SAIEE Afr. Res. J., vol. 111, no. 3, Art. no. 3, Sep. 

2020, doi: 10.23919/SAIEE.2020.9142605. 

 

[27] K.-F. Lee, Y.-L. Chen, C.-W. Yu, K.-Y. Chin, and C.-H. Wu, “Gaze Tracking and Point Estimation Using Low-Cost 

Head-Mounted Devices,” Sensors, vol. 20, no. 7, Art. no. 7, Mar. 2020, doi: 10.3390/s20071917. 

[28] L. Shi, C. Wang, F. Tian, and H. Jia, “An integrated neural network model for pupil detection and tracking,” Soft 



Adv. Technol. 2024, 4(1), 73-87 
 

  
87 

 

Comput., vol. 25, no. 15, Art. no. 15, Aug. 2021, doi: 10.1007/s00500-021-05984-y. 

 

[29] W. Zhou, X. Lu, and Y. Wang, “A Robust Pupil Localization via a Novel Parameter Optimization Strategy,” Wirel. 

Commun. Mob. Comput., vol. 2022, pp. 1–12, May 2022, doi: 10.1155/2022/2378911. 

 

[30] K. Donuk and D. Hanbay, “Pupil Center Localization Based on Mini U-Net,” Comput. Sci., vol. IDAP-2022 : 

International Artificial Intelligence and Data Processing Symposium, pp. 185–191, Oct. 2022, doi: 

10.53070/bbd.1173482. 

 

[31] S. Navaneethan and N. Nandhagopal, “RE-PUPIL: resource efficient pupil detection system using the technique 

of average black pixel density,” Sādhanā, vol. 46, no. 3, Art. no. 3, Sep. 2021, doi: 10.1007/s12046-021-01644-x. 

 

[32] Y. Yh et al., “DeepVOG: Open-source pupil segmentation and gaze estimation in neuroscience using deep 

learning,” J. Neurosci. Methods, vol. 324, Aug. 2019, doi: 10.1016/j.jneumeth.2019.05.016. 

 

[33] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-Net: Fully Convolutional Neural Networks for Volumetric Medical 

Image Segmentation,” in 2016 Fourth International Conference on 3D Vision (3DV), Oct. 2016, pp. 565–571. doi: 

10.1109/3DV.2016.79. 

 

[34] F. J. Vera-Olmos, E. Pardo, H. Melero, and N. Malpica, “DeepEye: Deep convolutional network for pupil detection 

in real environments,” Integr. Comput.-Aided Eng., vol. 26, no. 1, Art. no. 1, Jan. 2019, doi: 10.3233/ICA-180584. 

 

[35] P. Lertsiravarameth and P. Taeprasartsit, “Multiscale and Nonlinearility Convolutional Regression for Locating 

the Eye’s Pupil Center,” in 2020 17th International Joint Conference on Computer Science and Software Engineering (JCSSE), 

Nov. 2020, pp. 47–52. doi: 10.1109/JCSSE49651.2020.9268375. 

 

[36] S. Y. Han, H. J. Kwon, Y. Kim, and N. I. Cho, “Noise-Robust Pupil Center Detection Through CNN-Based 

Segmentation With Shape-Prior Loss,” IEEE Access, vol. 8, pp. 64739–64749, 2020, doi: 10.1109/ACCESS.2020.2985095. 

 

[37] A. Larumbe-Bergera, G. Garde, S. Porta, R. Cabeza, and A. Villanueva, “Accurate Pupil Center Detection in Off-

the-Shelf Eye Tracking Systems Using Convolutional Neural Networks,” Sensors, vol. 21, no. 20, Art. no. 20, Jan. 2021, 

doi: 10.3390/s21206847. 

 

[38] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, “Multi-PIE,” Proc. Int. Conf. Autom. Face Gesture Recognit. 

Int. Conf. Autom. Face Gesture Recognit., vol. 28, no. 5, Art. no. 5, May 2010, doi: 10.1016/j.imavis.2009.08.002. 

 

[39] N. Zdarsky, S. Treue, and M. Esghaei, “A Deep Learning-Based Approach to Video-Based Eye Tracking for Human 

Psychophysics,” Front. Hum. Neurosci., vol. 15, p. 685830, Jul. 2021, doi: 10.3389/fnhum.2021.685830. 

 

[40] A. Villanueva, V. Ponz, L. Sesma-Sanchez, M. Ariz, S. Porta, and R. Cabeza, “Hybrid method based on topography 

for robust detection of iris center and eye corners,” ACM Trans. Multimed. Comput. Commun. Appl., vol. 9, no. 4, Art. no. 

4, Aug. 2013, doi: 10.1145/2501643.2501647. 

 

[41] “Yale Face Database B | Computer Vision Online.” Accessed: Mar. 16, 2022. [Online]. Available: 

https://computervisiononline.com/dataset/1105138686 

 

[42] K. Zuiderveld, “Contrast limited adaptive histogram equalization,” in Graphics gems IV, USA: Academic Press 

Professional, Inc., 1994, pp. 474–485. 

 

[43] O. Jesorsky, K. J. Kirchberg, and R. W. Frischholz, “Robust Face Detection Using the Hausdorff Distance,” in Audio- 

and Video-Based Biometric Person Authentication, vol. 2091, J. Bigun and F. Smeraldi, Eds., in Lecture Notes in Computer 

Science, vol. 2091. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 90–95. doi: 10.1007/3-540-45344-X_14. 

 


