# Design and Simulation of a Carburattor to Run an Otto Engine on Producer Gas

H.P.M.N. Jayasuriya Department of Mechanical Engineering University of Moratuwa Katubedda, Sri Lanka. niroshmadusanka@gmail.com

M.L.A.D Danushka Department of Mechanical Engineering University of Moratuwa Katubedda, Sri Lanka. danushkaliyanaarachchi93@gmail.com

Abstract— This study presents the design and simulation of a carburetor optimized for internal combustion engines running on producer gas, a renewable fuel derived from biomass. Due to the lower energy density of producer gas compared to conventional fuels, achieving an optimal air-fuel ratio is critical for efficient combustion. Several carburetor models were developed and simulated using ANSYS to assess their mixing performance and ability to maintain the required air-fuel ratio under varying conditions. The simulations highlighted challenges in achieving a homogeneous mixture, with early models exhibiting poor mixing and safety risks, such as the potential for backfire due to inadequate pressure relief mechanisms. To address these issues, successive models incorporated design improvements and optimized nozzle configurations, which significantly enhanced the mixing quality. The final model demonstrated a substantial improvement in the uniformity of the air-fuel mixture, ensuring stable engine operation. These findings underline the importance of precise control over the mixing process in carburetor design for alternative fuels like producer gas. The results provide a foundation for further refinement and practical implementation of this technology, contributing to the development of more sustainable energy solutions.

Keywords— producer gas, CFD Simulation, gas carburetor, pre-mix combustion

#### I. INTRODUCTION

An internal combustion engine is any engine that uses the explosive combustion of fuel to push a piston within a cylinder. The different types of fuel commonly used for combustion engines are gasoline, diesel, and kerosene. Many people claimed the invention of the internal combustion engine in the 1860s, but only one has a patent on the four-stroke operating sequence. In 1867, Nikolaus August Otto, a German engineer, developed the four-stroke "Otto" cycle, which is widely used in transportation even today [1]. The Diesel Engine came about in 1892 by another German engineer, Rudolph Diesel. The Diesel engine is designed heavier and more powerful than gasoline engines and utilizes oil as fuel.

Since petroleum products were available and inexpensive in the 19<sup>th</sup> century, these kinds of IC engines were very common and popular in the transportation and power generation sectors. Fossil fuels were the major energy source and they can be burned to produce a significant amount of energy per unit mass (In the range of 30  $MJkg^{-1} - 48 MJkg^{-1}$ ) H.M.S.C. Ekanayake Department of Mechanical Engineering University of Moratuwa Katubedda, Sri Lanka. chathurangaekanayake72@gmail.com

J.G.A.S Jayasekara Department of Mechanical Engineering University of Moratuwa Katubedda, Sri Lanka. saliya@uom.lk

[2]. Most of the power plants are based on fossil fuels in the present. The question here is whether fossil fuels running out of the world at a high rate due to inefficient consumption. The rate at which the world consumes fossil fuels is not standing still, it keeps increasing with the world's population increase. Fossil fuels will, therefore, run out earlier than expected.

With the renewed interest in biomass energy, biomassbased technologies are gaining prominence not only in the rural energy sector but also in industrial power plants. Biomass is emerging as a leading source of renewable energy due to several advantages: it utilizes agricultural waste, is available in large quantities, supports eco-friendly gasification processes, and produces gasification outputs that can be stored as fuel.

Producer gas from biomass gasification is expected to contribute to a greater energy mix in the future. Therefore, the effect of producer gas on engine performance is of great interest. Presently, the use of 100% producer gas in spark ignition (SI) engines was not successful, because producer gas has low energy density [3]. Increasing energy efficiency and the use of alternative fuels in place of fossil fuels are the main challenges within this project. As a gaseous fuel, producer gas is a better option as an environment-friendly fuel. With the help and knowledge of recent discoveries and research, the project is headed to the design and simulation of a carburetor to run a gasoline engine with producer gas.

#### II. LITERATURE REVIEW

#### A. Importance of producer gas

The use of efficient renewable energy technologies was very popular over the past several years. Those technologies are receiving increasing attention from government, industry, and consumers. Wind energy, hydro energy, solar energy, and biomass energy are some of the renewable energy technologies.

Although the consumption of biomass-based energy is high, the efficiency of biomass systems is not at a satisfactory level [4]. Throughout the known history, wood has been used as a source of heat by burning the wood directly. But in the case of burning wood, we lose about 67% of its energy in the environment with smoke [5]. The laws that govern combustion processes also apply to gasification. Therefore, the purpose of gasification is the almost complete transformation of these components into a gaseous form so that only the ashes and inert materials keep on [6]. Producer gas is an example of using biomass efficiently. It is needed to increase the efficiency of existing energy generation processes due to the scarcity of energy sources.

#### B. Role of gasification in biomass conversion

Biomass is renewable energy with many positive features. The technology of biomass gasification gives a profitable choice of power generation for a wide variety of applications including distributed power generation [7]. Biomass contains mostly organic matter & waste materials from plants and animals that are not used for food and feed but can be used as a fuel. Gasification is a thermochemical process that converts biomass or fossil fuel-based carbonaceous materials into CO,  $H_2 \& CO_2$ . This is accomplished by reacting the materials at high temperatures (>700<sup>o</sup>C) without complete combustion and with a controlled amount of  $O_2$  [8]. The air-fuel ratio should be maintained below the stoichiometric ratio. In case complete combustion happens, the results will be  $CO_2 \& H_2O$  which are not combustible gases.

#### C. Content of producer gas

Biomass-based producer gas generally contains 18-20% each of H<sub>2</sub> and CO, 2% of CH<sub>4</sub>, and other inert gases such as CO<sub>2</sub> and N<sub>2</sub>[9]. In order to that, there are some hydrocarbons such as ethylene (C<sub>2</sub>H<sub>2</sub>), ethane (C<sub>2</sub>H<sub>6</sub>), and a small amount of tar and ash [10]. The lower calorific value of producer gas is approximately between 4.5 and 4.9 MJ/kg and the stoichiometric air-fuel ratio is present at  $1.25 \pm 0.05$  on a mass basis [9]. When compared with gasoline (54 MJ/kg), producer gas is a kind of low-energy-density fuel. Some of the important specific properties of air and producer gas are shown in Table I. These data can be used to analyze the mixing of air and producer gas through and intake manifolds of dissimilar geometrics using computational fluid dynamics (CFD).

 TABLE I.
 Specific Properties of Air and Producer Gas [11]

| Property                      | Air        | Producer Gas |
|-------------------------------|------------|--------------|
| Density (kg/m <sup>3</sup> )  | 1.175      | 0.978        |
| Viscosity (Pas)               | 1.179×10-5 | 1.452×10-5   |
| Specific Heat (J/kg K)        | 1005.148   | 3838.358     |
| Thermal Conductivity (kW m/K) | 0.0248     | 0.0535       |

### D. Properties of producer gas

Comparing the properties of producer gas with those of pure gases is an effective method for identifying the unique qualities and behaviors of producer gas. Key data on producer gas, in comparison with pure gases, is presented in Table II.

 
 TABLE II.
 COMPARISON OF PRODUCER GAS AND PURE COMBUSTIBLE GASES [12]

| Fuel                          | Fuel Air                                                                                                                             | Air/Fuel Mix                                                                                                                                                                        | Mixture,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Φ, L                                                                                                                                                                                                                                                                                                                                                                                                                   | Φ, Limit                                                |                                                         | S <sub>L</sub> (Limit),<br>cm/s                         |                                                         | Peak<br>Flame                                           | Product/<br>Reactant                                    |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Air                           | MJ/kg                                                                                                                                | @ ( <b>Φ</b> =1)                                                                                                                                                                    | MJ/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lean                                                                                                                                                                                                                                                                                                                                                                                                                   | Rich                                                    | Lean                                                    | Rich                                                    | $\frac{\Psi - 1}{cm/s}$                                 | Temp,                                                   | Mole<br>Ratio                                           |
| $H_2$                         | 121                                                                                                                                  | 34.4                                                                                                                                                                                | 3.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.17                                                    | 65                                                      | 75                                                      | 270                                                     | 2400                                                    | 0.67                                                    |
| СО                            | 10.2                                                                                                                                 | 2.46                                                                                                                                                                                | 2.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.80                                                    | 12                                                      | 23                                                      | 45                                                      | 2400                                                    | 0.67                                                    |
| $CH_4$                        | 50.2                                                                                                                                 | 17.2                                                                                                                                                                                | 2.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.69                                                    | 2.5                                                     | 14                                                      | 35                                                      | 2210                                                    | 1.00                                                    |
| C <sub>3</sub> H <sub>8</sub> | 46.5                                                                                                                                 | 15.6                                                                                                                                                                                | 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.26                                                    | -                                                       | -                                                       | 44                                                      | 2250                                                    | 1.17                                                    |
| $C_4H_{10}$                   | 45.5                                                                                                                                 | 15.4                                                                                                                                                                                | 2.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.63                                                    | -                                                       | -                                                       | 44                                                      | 2250                                                    | 1.20                                                    |
| PG                            | 5.00                                                                                                                                 | 1.35                                                                                                                                                                                | 2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.47<br>a                                                                                                                                                                                                                                                                                                                                                                                                              | 1.60<br>b                                               | 10.3                                                    | 12                                                      | 50<br>с                                                 | 1800<br>d                                               | 0.87                                                    |
|                               | Fuel<br>+<br>Air<br>H <sub>2</sub><br>CO<br>CH <sub>4</sub><br>C <sub>3</sub> H <sub>8</sub><br>C <sub>4</sub> H <sub>10</sub><br>PG | $\begin{array}{c c} Fuel & Fuel \\ + & LCV, \\ Air & MJ/kg \\ \hline H_2 & 121 \\ CO & 10.2 \\ CH_4 & 50.2 \\ C_3H_5 & 46.5 \\ C_4H_{10} & 45.5 \\ \hline PG & 5.00 \\ \end{array}$ | $\begin{array}{c cccc} Fuel \\ + \\ LCV, \\ MJ/kg \\ \hline \\ H_2 \\ CO \\ 10.2 \\ C_3H_5 \\ 46.5 \\ 15.6 \\ C_4H_{10} \\ 45.5 \\ 15.4 \\ PG \\ 5.00 \\ 1.35 \\ \end{array} \begin{array}{c} Air/Fuel \\ @(\Phi=1) \\ @$ | $\begin{array}{c cccc} Fuel \\ + \\ Air \\ Mir \\ Mj/kg \end{array} \begin{array}{c} Air/Fuel \\ @ (\Phi = 1) \\ Mj/kg \end{array} \begin{array}{c} Mixture, \\ Mj/kg \\ @ (\Phi = 1) \\ Mj/kg \\ \hline Mj/kg \\ H_2 \\ 121 \\ CO \\ 10.2 \\ 2.46 \\ 2.92 \\ CH_4 \\ 50.2 \\ 17.2 \\ 2.76 \\ C_3H_5 \\ 46.5 \\ 15.6 \\ 2.80 \\ C_4H_{10} \\ 45.5 \\ 15.4 \\ 2.77 \\ PG \\ 5.00 \\ 1.35 \\ 2.12 \\ \hline \end{array}$ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ |

When comparing producer gas with methane is more important with respect to the operation of the internal combustion engine [12]. The reason why is most of the engines operating on gaseous fuels are very close to pure methane (natural gas) or diluted methane (biogas, landfill gas) [12]. The fuel-air mass equivalence ratio at the flammability limits compares closely for both gases, but the laminar burning velocity for producer gas at the lean limits is much higher. Due to the presence of H<sub>2</sub>, the laminar burning velocity for producer gas (at 0.1MPa, 300K) is about 0.5ms<sup>-1</sup> which is approximately 30% higher than methane. This is caused by lower advancement in the ignition timing for the engine based on producer gas fuel [12].

Although producer gas can be used for IC engine operations, it has largely been left unexploited due to additional perceptions which are auto-ignition tendency at higher compression ratio and large de-rating in power due to lower calorific value. After re-examining those perceptions, it was discovered that due to the presence of hydrogen, laminar burning velocity being high, and it might reduce the tendency for the knock. Also, the presence of  $CO_2$  and  $N_2$ might suppress the pre-flame reactions that are caused by knocking on account of increased dilution. In order to that, there is a general perception that producer gas being a low energy density fuel, the extent of de-rating in power would be large when compared to high energy density fuels like natural gas or liquefied petroleum gas [12].

#### III. METHODOLOGY

In this research, it is expected to simulate the mixing capabilities of producer gas and air, in order to obtain the correct air-fuel ratio. As an initial stage commercially available IC engine was selected and simulation was done for the selected RPM value.

#### A. Selection of an Engine

The research deals with the use of producer gas efficiently for power generation. Engine capacity is a measurement of how large the space, is where the piston operates. A larger capacity means the piston is able to push more air and fuel, in this research, producer gas as fuel. It usually follows that if the capacity is bigger, with more power you can expect the engine to produce [13]. Fig. 1 shows the selected engine and relevant specifications are as follows:



Fig. 1. Single-cylinder, four-stroke engine (Model: 156FMI-2Z2)

Displacement: 124.1ml Compression ratio: 9.0:1 Primary reduction: 4.055 Bore\*Stroke: 56.5mm\*49.5mm Max. Net Power & Rotating Speed:7.2kW/9000r/min Rated Power & Rotating Speed:7.0kW/9000r/min Max Torque & Rotating Speed:8.3N.m/7500r/min Min Fuel Consumption: ≤ 367g/kWh Idling Speed: 1500r/min Ignition: CDI

#### B. Identification of design specifications

The basic requirement of a carburetor is its ability to maintain the necessary air-to-fuel ratio under varying load or throttle conditions. Additionally, it should ensure smooth operation with minimal pressure loss. Another critical function is to shut off the fuel supply in case of engine tripping or shutdown. Since the air-to-fuel ratio is a fixed value for any given fuel and air, the required rate of mixed air-fuel is also considered fixed, based on simulations performed for the selected RPM value.

Another important factor is the mixing capability and quality of the air-fuel mixture. The carburetor should provide a homogeneous mixture at the end of the mixing process. To assess the mixing capability, three different models were developed, and the mixture at their outlets was evaluated. Afterward, the model that produced the best mixture was selected, and simulations continued to achieve the required air-to-fuel ratio.

#### C. Air-to-fuel ratio calculation

The main content of producer gas is shown in Table III.

| Component       | Volume Percentage (%) | Mass Percentage (%) |
|-----------------|-----------------------|---------------------|
| $H_2$           | 20                    | 1.65                |
| CO              | 20                    | 23.17               |
| CH <sub>4</sub> | 2                     | 1.32                |
| CO <sub>2</sub> | 10                    | 18.21               |
| $N_2$           | 48                    | 55.62               |

TABLE III. CONTENT OF PRODUCER GAS [14]

The flammable gases in this case are  $H_2$ , CO, and CH<sub>4</sub>. The required O<sub>2</sub> mass for the complete combustion of each flammable component has been calculated, and the final airfuel ratio was determined to be 1.36 for the given composition. This ratio may vary depending on the volume content of each gas component.

## D. Governing Equations

The CFD simulations conducted in ANSYS Fluent were based on fundamental fluid dynamics equations to model the flow and mixing of producer gas and air. The primary governing equations include:

Continuity Equation: Ensures mass conservation, expressed as equation (1) for incompressible flows.

$$\nabla \cdot \mathbf{v} = \mathbf{0} \tag{1}$$

Momentum Equations (Navier-Stokes): Govern the conservation of momentum, given by:

$$\rho(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v}) = -\nabla \mathbf{p} + \mu \nabla^2 \mathbf{v} + \mathbf{f}$$
(2)

These equations are essential for predicting velocity and pressure fields.

Energy Equation: Although temperature effects were assumed constant, the energy equation can be expressed as:

$$\frac{\partial}{\partial t}(\rho E) + \nabla \cdot (v(\rho E + p)) = \nabla \cdot (k \nabla T) + S$$
(3)

Turbulence Modeling: The  $k-\epsilon$  model was employed to account for turbulence effects, using two transport equations for turbulence kinetic energy (k) and dissipation rate ( $\epsilon$ ).

These equations provided the framework for accurately simulating the mixing process in the carburetor design.

#### E. Simulations and Developments

#### Model 01

A simple structure for air and fuel mixing with a mechanism to supply the required rate of fuel mixture by automatic means. 3 types were formulated by changing the position of inlet and outlet ports and some slight changes in the design as shown in Fig. 2. Simulations were done for all the 3 types. The requirement was to check the Producer gas and air, mixing under varying flow rates to gain the correct air-fuel ratio. The applicability of those models was checked by visualizing mass fractions of Producer gas at the mixture outlet. Some of the simulated results are shown in Table IV.





Fig. 2. Model 01 types





According to the above-simulated results, types 2 & 3 were suitable for the final design but type 2 was the best-suited design. The reason was that the Producer Gas (PG) mass fraction spreads more uniformly throughout the Gas-mixture outlet area than the other two designs (Refer to the contour of the PG mass Fraction at the outlet in Table IV).

In addition to the simulation results, practical considerations revealed that Model 01 was a failed design due to several safety and performance issues. These include the risk of explosion in the mixing chamber during a backfire, as there was no pressure relief mechanism in place. Additionally, a considerable amount of mixed air and fuel was present in the chamber at any given moment, posing further risks. Furthermore, the prototype did not achieve the required level of fuel mixing, making the design inadequate.

#### Model 02

As model 01 was not successful, model 02 was created (Fig. 3). There are no automatic means for mixing the fuel with air, and the required mixture is obtained by using 2 flow control valves placed in inlets of air and producer gas. To reduce the pre-mixed air volume model 02 was designed.



Fig. 3. Model 02 types

The expected level of mixing was not achieved, as producer gas and air could still be seen separately at the tube outlet. To improve mixing, turbulence in the flow needs to be maximized. In Type 02 of Model 02, a baffle plate was introduced, which significantly enhanced the mixing compared to Type 01 of Model 02.





#### Model 03

This model is the same as the Bunsen burner mechanism. There are 2 ports for the air inlet and one for producer gas inlet. Mixing happens automatically with the change of flow of producer gas.



Fig. 4. Model 03

When the producer gas is supplied through the inlet, due to the nozzle effect air automatically flows inside the tube. The simulation was performed to decide design parameters to obtain the required air-fuel ratio. The first investigation was to select the number of holes for the air inlet. Basically, 3 prototypes (each including holes 2,3, and 4 respectively) were selected and simulation was done using ANSYS 18.1 to identify the mixing capabilities. Detailed analysis is shown in Table VI.

According to the results in Table VI, all the types were appropriate for the final design but type 1 was the best-suited design. The reason was that the PG mass fraction spreads uniformly throughout the gas-mixture outlet area than the other two designs (Refer to the contour of the PG mass Fraction at the outlet in Table VI).

| TABLE VI. | DETAILED ANALYSIS FOR 3     | TYPES IN MODEL         | 03 |
|-----------|-----------------------------|------------------------|----|
|           | Definited in the fold for p | I I LO II I II O D L L | ~~ |



After selecting a two-holes model, parametric simulations were done to select the most suitable model. Here the selected nozzle was modeled using ANSYS 18.1 Design Modeler and followed the same basic procedure same in simulating model 01 and model 02. The aim was to identify the relationship between the geometrical dimensions and outlet producer gas mass fraction. To make this process easier some parameters were kept constant (Refer to Table VII).

#### Geometry and boundary conditions



Fig. 5. Model 03 detail design

TABLE VII. VARIABLE AND CONSTANT PARAMETERS USED FOR SIMULATIONS IN MODEL 03

| V٤               | ariable Parameters              | <b>Constants Parameters</b> |      |                            |  |
|------------------|---------------------------------|-----------------------------|------|----------------------------|--|
| D <sub>In</sub>  | Producer gas nozzle<br>diameter | D <sub>Outl</sub>           | 10mm | PG inlet diameter          |  |
| D <sub>Air</sub> | Air inlet diameter              | D <sub>Out2</sub>           | 10mm | Mixture outlet<br>diameter |  |
| VINPG            | PG inlet Velocity               |                             |      |                            |  |

Using variables as shown in Table VIII and Table IX, the 3D fluid domain was created using ANSYS 18.1 Design modeler. For those parameters, two data sets were introduced.

| VELOCITY MODELS |                      |                       |                                       |  |  |  |  |  |  |  |
|-----------------|----------------------|-----------------------|---------------------------------------|--|--|--|--|--|--|--|
| Model           |                      |                       |                                       |  |  |  |  |  |  |  |
| No              | D <sub>in</sub> (mm) | D <sub>Air</sub> (mm) | V <sub>inPG</sub> (ms <sup>-1</sup> ) |  |  |  |  |  |  |  |
| 1               | 2                    | 2                     | 1                                     |  |  |  |  |  |  |  |
| 2               | 2                    | 3                     | 1                                     |  |  |  |  |  |  |  |
| 3               | 2                    | 4                     | 1                                     |  |  |  |  |  |  |  |
| 4               | 2                    | 5                     | 1                                     |  |  |  |  |  |  |  |
| 5               | 2                    | 6                     | 1                                     |  |  |  |  |  |  |  |
| 6               | 3                    | 2                     | 1                                     |  |  |  |  |  |  |  |
| 7               | 3                    | 3                     | 1                                     |  |  |  |  |  |  |  |
| 8               | 3                    | 4                     | 1                                     |  |  |  |  |  |  |  |
| 9               | 3                    | 5                     | 1                                     |  |  |  |  |  |  |  |
| 10              | 3                    | 6                     | 1                                     |  |  |  |  |  |  |  |
| 11              | 4                    | 2                     | 1                                     |  |  |  |  |  |  |  |
| 12              | 4                    | 3                     | 1                                     |  |  |  |  |  |  |  |
| 13              | 4                    | 4                     | 1                                     |  |  |  |  |  |  |  |
| 14              | 4                    | 5                     | 1                                     |  |  |  |  |  |  |  |
| 15              | 4                    | 6                     | 1                                     |  |  |  |  |  |  |  |
| 16              | 5                    | 2                     | 1                                     |  |  |  |  |  |  |  |
| 17              | 5                    | 3                     | 1                                     |  |  |  |  |  |  |  |
| 18              | 5                    | 4                     | 1                                     |  |  |  |  |  |  |  |
| 19              | 5                    | 5                     | 1                                     |  |  |  |  |  |  |  |
| 20              | c                    | 6                     | 1                                     |  |  |  |  |  |  |  |

TABLE VIII. CONSTANT

| TABLE IX. | CONSTANT |
|-----------|----------|
| DIAMETER  | R MODELS |

| Model |                      |                       |                                       |
|-------|----------------------|-----------------------|---------------------------------------|
| No    | D <sub>in</sub> (mm) | D <sub>Air</sub> (mm) | V <sub>inPG</sub> (ms <sup>-1</sup> ) |
| 1     | 4                    | 4                     | 1                                     |
| 2     | 4                    | 4                     | 0.9                                   |
| 3     | 4                    | 4                     | 0.8                                   |
| 4     | 4                    | 4                     | 0.7                                   |
| 5     | 4                    | 4                     | 0.6                                   |
| 6     | 4                    | 4                     | 0.5                                   |
| 7     | 4                    | 4                     | 0.4                                   |
| 8     | 4                    | 4                     | 0.3                                   |
| 9     | 4                    | 4                     | 0.2                                   |
| 10    | 4                    | 4                     | 0.1                                   |

#### Mesh & mesh quality

The mesh was structured with the Hex-dominant method in order to create the best mesh quality in all the parts of the domain since it is undisturbed with any geometry (Refer Fig. 6). A surface sizing with a comparatively smaller element size was added to comply with the complicated boundary conditions that would be created near the nozzle area as shown in Fig. 7.



Fig. 6. Hexahedral computational mesh



Fig. 7. Refined mesh near the neck

Mainly Skewness, Element Quality, and Aspect Ratio were considered when refining the mesh. Respective values for the final design are shown in Table X. According to those parameters, it could be guaranteed that the selected mesh was suitable for further simulation processes.

TABLE X. SKEWNESS, ELEMENT QUALITY AND ASPECT RATIO OF THE FINAL REFINED MESH

| Mesh Metric        | Skewness                | Element Quality        | Aspect Ratio |
|--------------------|-------------------------|------------------------|--------------|
| Min                | 1.305x10 <sup>-10</sup> | 0.4811                 | 1.0182       |
| Max                | 0.7592                  | 0.9998                 | 5.8220       |
| Average            | 4.414x10 <sup>-2</sup>  | 0.9802                 | 1.1902       |
| Standard Deviation | 0.1145                  | 5.378x10 <sup>-2</sup> | 0.4849       |

#### Problem domain

Producer gas is supplied through the PG inlet at a constant velocity. Due to the effect of the nozzle, atmospheric air is drawn into the hollow tube through two holes and mixed with the producer gas. The average mass fraction of the producer gas at the mixture outlet and the outlet velocity of the mixture were measured as part of the results. The assumptions made in the simulations are listed below:

- The properties of producer gas and atmospheric air are constant throughout the simulation.
- There is no chemical reaction between the producer gas and atmospheric air.
- The temperature of the system remains constant.
- There is no backpressure at the gas mixture outlet.
- Gravitational forces can be neglected.

The setup of boundary conditions and the solution methods used in the simulation are summarized in Table XI.

TABLE XI. SETUP, BOUNDARY CONDITIONS, AND SOLUTION METHODS

| Solver     | Type- Pressure Based                                          |
|------------|---------------------------------------------------------------|
|            | Time- Steady                                                  |
|            | Velocity Formulation- Absolute                                |
| Model      | Energy solver- On                                             |
|            | Viscous Model- Standard k-epsilon with standard wall function |
|            | Species – Species Transport                                   |
| Material   | Fluid 1- Air (Ideal gas properties)                           |
|            | Fluid 2 - Producer Gas                                        |
| Cell Zone  | Air Volume – Air and Producer gas mixture                     |
| Boundary   | PG Inlet – Velocity inlet, Constant velocity, PG @300K        |
| Conditions | Air Inlet – Pressure inlet (Atmospheric) @300K                |
|            | Mixture Outlet- Pressure Outlet (Atmospheric)                 |
|            | Tube Walls - Stationery and no-slip adiabatic walls.          |
| Solution   | Under relaxation values – Default                             |
| Control    |                                                               |
| Solution   | Pressure Velocity Coupling Scheme - Coupled                   |
| Method     | Spatial Discretization                                        |
|            | <ul> <li>Gradient - Least Squares Cell-Based</li> </ul>       |
|            | o Pressure, Momentum, Turbulence Kinetic Energy, Turbulence   |
|            | Dissipation Rate, Energy - Second-Order Upwind                |

#### **IV. RESULTS**

Since there are several parametric models, the following data set was used to illustrate the final outcomes of the simulations.

| D In             | Producer gas nozzle diameter | 5 mm                |
|------------------|------------------------------|---------------------|
| D <sub>Air</sub> | Air inlet diameter           | 6 mm                |
| V INPG           | PG inlet velocity            | 14 ms <sup>-1</sup> |
| D Outl           | PG inlet diameter            | 14mm                |
| D Out2           | Mixture outlet diameter      | 14mm                |

Illustrations of velocity and PG mass fraction distribution using contours and volume renderings are shown in Fig. 8, Fig. 9, and Fig. 10.



Fig. 9. Volume rendering of (a) PG mass fraction (b) Velocity distribution

(b)

(a)



Fig. 10. Properties at the outlet (a) PG mass fraction (b) Velocity contours

The relationship between the outlet producer gas (PG) mass fraction and the diameters of the air and PG inlets is shown in Fig. 11. The results indicate that the PG mass fraction at the outlet increases with both the inlet diameter ( $D_{in}$ ) and the air inlet diameter ( $D_{Air}$ ). Additionally, Fig. 12 illustrates the relationship between the outlet PG mass fraction and the PG inlet velocity. The PG mass fraction at the outlet decreases with the reduction of PG inlet velocity up to a critical point. Beyond this critical velocity, air mixing completely stops, and the PG mass fraction reaches a value of 1, meaning the outlet consists solely of producer gas. Understanding these behaviors was crucial for finalizing the models for manufacturing.



Fig. 11. PG mass fraction at outlet vs air inlet diameter



Fig. 12. PG mass fraction at outlet vs PG inlet velocity

The required producer gas (PG) mass fraction and outlet velocity for proper engine operation were determined. For an air-fuel ratio of 1.36, the PG mass fraction at the engine inlet is 0.4237. The air-fuel mixture inlet velocity was calculated based on an engine speed of 3000 rpm, an engine capacity of 150 cc, and a gas mixture outlet diameter of 14 mm. The required volume flow rate for the air-fuel mixture is  $3.75 \times 10^{-3} \text{ m}^3 \text{s}^{-1}$ . Given the model dimensions, the required velocity at the mixture outlet is 24.36 ms<sup>-1</sup>.

If the outlet mixture velocity is higher than 24.36 ms<sup>-1</sup>, it can be accepted but that velocity must satisfy the PG Mass fraction. That means for the velocities above 24.36 ms<sup>-1</sup>, PG mass fraction should be 0.42. Until the above condition is satisfied rest of the simulations are conducted and it gives several combinations of parameters to obtain both producer gas mass fraction and required mixed flow velocity. (Refer to Appendix A).

#### V. DISCUSSION

The design and simulation of a carburetor to run an internal combustion engine on producer gas present several unique challenges and opportunities. The low energy density of producer gas compared to conventional fuels like gasoline and natural gas necessitates a specialized carburetor design that can maintain an optimal air-fuel ratio, ensuring efficient combustion and engine performance.

The simulations carried out for different carburetor models revealed critical insights into the mixing behavior of air and producer gas. The initial models faced issues related to incomplete mixing and safety concerns, particularly the risk of backfire due to the accumulation of fuel-air mixtures in the chamber. These challenges underscore the importance of achieving a homogenous mixture while minimizing the volume of pre-mixed gases to reduce the risk of explosion.

Model 03, which employed a Bunsen burner mechanism, showed significant improvements over previous designs. By optimizing the number and positioning of air inlet holes, this model achieved a more uniform distribution of producer gas in the air-fuel mixture, leading to better combustion stability. The use of ANSYS simulations allowed for precise control over variables such as nozzle diameter, air inlet size, and gas velocity, providing a comprehensive understanding of how these factors influence the mixing process.

However, despite these advancements, the practical implementation of the designed carburetor would require further refinement. The results indicated that while the model could theoretically maintain the required air-fuel ratio, realworld variables such as engine load variations, ambient temperature changes, and fuel composition fluctuations might necessitate adaptive control mechanisms to ensure consistent performance.

The study also highlights the broader implications of using producer gas as a fuel. Given its renewable nature and the increasing scarcity of fossil fuels, optimizing internal combustion engines to run on biomass-derived gases could significantly contribute to sustainable energy solutions. However, the lower calorific value of producer gas remains a limitation, leading to reduced engine power output compared to conventional fuels. This trade-off must be carefully considered in applications where power density is critical.

### VI. CONCLUSION

This study successfully designed and simulated a carburetor capable of running an internal combustion engine on producer gas. Through iterative modeling and simulation using ANSYS, the final design demonstrated improved mixing of air and producer gas, achieving the necessary stoichiometric air-fuel ratio for stable engine operation. Model 03, in particular, emerged as the most effective design, offering a practical solution to the challenges posed by the low energy density of producer gas.

The research contributes to the ongoing development of alternative fuel technologies, particularly in the context of utilizing renewable biomass resources. While the designed carburetor shows promise for real-world applications, further testing and refinement are necessary to address the practical challenges identified during the simulation process. Future work should focus on integrating adaptive control systems to accommodate variable operating conditions and exploring methods to enhance the energy density of producer gas. Overall, this work demonstrates the feasibility of using producer gas in internal combustion engines, offering a pathway towards more sustainable and eco-friendly energy solutions in the face of depleting fossil fuel reserves.

#### ACKNOWLEDGMENT

We would like to express our sincere gratitude to our supervisor, Prof. J.G.A.S. Jayasekara, for his consistent support and invaluable guidance throughout the course of this project. His expertise and encouragement were instrumental in the successful completion of our work. We also extend our thanks to the academic staff for their continuous feedback and constructive reviews, which significantly contributed to achieving better results.

#### REFERENCES

- "A Review on Internal Combustion Engines," Int. J. Res. Eng. Sci. Manag..
- [2] K. Sivabalan, S. Hassan, H. Ya, and J. Pasupuleti, "A review on the characteristic of biomass and classification of bioenergy through direct combustion and gasification as an alternative power supply," *J. Phys. Conf. Ser.*, vol. 1831, no. 1, p. 012033, Mar. 2021, doi: 10.1088/1742-6596/1831/1/012033.
- [3] P. E. Akhator, A. I. Obanor, and E. G. Sadjere, "Design and development of a small-scale biomass downdraft gasifier," *Niger. J. Technol.*, vol. 38, no. 4, p. 922, Dec. 2019, doi: 10.4314/njt.v38i4.15.
- [4] A. Faaij, "Modern Biomass Conversion Technologies," *Mitig. Adapt. Strateg. Glob. Change*, vol. 11, no. 2, pp. 343–375, Mar. 2006, doi: 10.1007/s11027-005-9004-7.
- [5] F. L. BROWNE, "THEORIES OF THE COMBUSTION OF WOOD AND ITS CONTROL A Survey of the Literature", [Online]. Available: https://ir.library.oregonstate.edu/downloads/3r074z89g
- [6] "Biomass Gasification, Pyrolysis and Torrefaction 2nd Edition." Accessed: May 15, 2019. [Online]. Available: https://www.elsevier.com/books/biomass-gasification-pyrolysis-andtorrefaction/basu/978-0-12-396488-5
- [7] G. Sridhar, "Experimental and modeling aspects of producer gas engine," in 2008 IEEE International Conference on Sustainable Energy Technologies, Nov. 2008, pp. 995–1000. doi: 10.1109/ICSET.2008.4747152.
- [8] S. Dutta, "Nano catalysts in effective biomass processing," vol. 4, 2015.
- [9] G. Sridhar, H. V. Sridhar, S. Dasappa, P. J. Paul, N. K. S. Rajan, and H. S. Mukunda, "Development of producer gas engines," *Proc. Inst. Mech. Eng. Part J. Automob. Eng.*, vol. 219, no. 3, pp. 423–438, Mar. 2005, doi: 10.1243/095440705X6596.
- [10] R. Warnecke, "Gasification of biomass: Comparison of fixed bed and fluidized bed gasifier," vol. 18, pp. 489–497, 2000.
- [11] S. J. Suryawanshi and R. B. Yarasu, "Computational Analysis for Mixing of Air and Producer Gas through an Intake Manifold of

Different Geometries," Int. J. Curr. Eng. Technol., Oct. 2016, [Online]. Available: Available at http://inpressco.com/category/ijcet

- [12] G. Sridhar and Ravindra Babu Yarasu, Facts about Producer Gas Engine, vol. 26. Govt. College of Engineering, Amravati, Maharashtra, India: Siemens Corporate Research and Technologies, Bangalore.
- [13] "Engine size explained | Carbuyer." Accessed: Feb. 14, 2020. [Online]. Available: https://www.carbuyer.co.uk/tips-andadvice/146778/engine-size-explained
- [14] S. J. Suryawanshi and R. B. Yarasu, "Design and Simulation of a Producer Gas Carburetor – A Review," Int. J. Curr. Eng. Technol., no. 3, 2014.

#### APPENDIX A

#### Simulations for Barrel Size 13mm REQUIREMENT

| •       | Outlet PG M       | Mass fraction   | n = 0.4237   |                  |                   |
|---------|-------------------|-----------------|--------------|------------------|-------------------|
| •       | Outlet Mixt       | ure Velocity    | v = 28.25  m | IS <sup>-1</sup> |                   |
| Model   | PG inlet          |                 |              | Outlet PG Mass   | Outlet average    |
| No      | Velocity          | D <sub>in</sub> | Dair         | Fraction         | velocity          |
| Units   | m s <sup>-1</sup> | mm              | mm           |                  | m s <sup>-1</sup> |
| 1       | 12                | 5               | 3            | 0.675088         | 16 7058           |
| 2       | 12                | 5               | 3            | 0.52245          | 20,6096           |
| 2       | 12                | 5               | 4            | 0.35343          | 20.0560           |
| 3       | 12                | 5               | 0            | 0.350020         | 19.0319           |
| 4       | 13                | 5               | 5            | 0.082040         | 18.0218           |
| 5       | 13                | 5               | 4            | 0.553679         | 21.6839           |
| 6       | 13                | 5               | 5            | 0.468429         | 25.2423           |
| 7       | 13                | 5               | 6            | 0.418703         | 27.9775           |
| 8       | 14                | 5               | 4            | 0.571057         | 22.7165           |
| 9       | 14                | 5               | 5            | 0.485376         | 26.3079           |
| 10      | 14                | 5               | 6            | 0.435369         | 29.0732           |
| 11      | 14                | 5               | 8            | 0.389696         | 32.0303           |
| 12      | 12                | 6               | 3            | 0.707327         | 16.1249           |
| 13      | 12                | 6               | 5            | 0.455725         | 23.902            |
| 14      | 12                | 6               | 6            | 0.408862         | 26.4324           |
| 15      | 12                | 6               | 7            | 0.386445         | 27.8425           |
| 16      | 12                | 6               | 8            | 0.372239         | 28.7253           |
| 17      | 13                | 6               | 3            | 0.712466         | 17.3556           |
| 18      | 13                | 6               | 4            | 0.563476         | 21.3421           |
| 19      | 13                | 6               | 5            | 0.476523         | 24 8579           |
| 20      | 13                | 6               | 6            | 0.470325         | 27,2162           |
| 20      | 13                | 6               | 7            | 0.431730         | 27.2103           |
| 21      | 13                | 6               | 0            | 0.406073         | 20.3500           |
| 22      | 13                | 0               | 0            | 0.393003         | 19.5644           |
| 23      | 14                | 6               | 5            | 0.717659         | 18.5044           |
| 24      | 14                | 6               | 4            | 0.579405         | 22.4249           |
| 25      | 14                | 6               | 5            | 0.496562         | 25.7691           |
| 26      | 14                | 6               | 6            | 0.454102         | 27.9515           |
| 27      | 14                | 6               | 7            | 0.429233         | 29.3797           |
| 28      | 14                | 6               | 8            | 0.416683         | 30.134            |
| 29      | 12                | 7               | 3            | 0.72282          | 15.8255           |
| 30      | 12                | 7               | 4            | 0.563205         | 19.7318           |
| 31      | 12                | 7               | 5            | 0.466357         | 23.4191           |
| 32      | 12                | 7               | 6            | 0.419468         | 25.8267           |
| 33      | 12                | 7               | 7            | 0.39556          | 27.3394           |
| 34      | 12                | 7               | 8            | 0.37915          | 28.2993           |
| 35      | 13                | 7               | 3            | 0.732577         | 16.9432           |
| 36      | 13                | 7               | 4            | 0.580908         | 20.7886           |
| 37      | 13                | 7               | 5            | 0.488332         | 24.3399           |
| 38      | 13                | 7               | 6            | 0.443838         | 26.5579           |
| 39      | 13                | 7               | 7            | 0 420114         | 27 9834           |
| 40      | 13                | 7               | , 8          | 0.404245         | 28 8287           |
| 41      | 14                | 7               | 3            | 0 741443         | 18 0552           |
| 41      | 14                | 7               | 4            | 0.507278         | 21 8/32           |
| 42      | 14                | 7               | 4<br>C       | 0.537278         | 21.0452           |
| 45      | 14                | 7               | ,<br>,       | 0.303803         | 23.2130           |
| 44      | 14                | /               | 0            | 0.400932         | 27.2841           |
| 45      | 14                | /               | /            | 0.443095         | 28.6464           |
| 46      | 12                | /               | 8            | 0.37915          | 28.2993           |
| 47      | 12                | 8               | 3            | 0.732046         | 15.6426           |
| 48      | 12                | 8               | 4            | 0.571932         | 19.4582           |
| 49      | 12                | 8               | 5            | 0.472566         | 23.1061           |
| 50      | 12                | 8               | 6            | 0.424037         | 25.5413           |
| 51      | 12                | 8               | 7            | 0.39806          | 27.0993           |
| 52      | 13                | 8               | 3            | 0.745465         | 16.6845           |
| 53      | 13                | 8               | 4            | 0.591095         | 20.4631           |
| 54      | 13                | 8               | 5            | 0.49648          | 23.9585           |
| 55      | 13                | 8               | 6            | 0.449726         | 26.2374           |
| 56      | 13                | 8               | 7            | 0.425063         | 27.6304           |
| 57      | 13                | 8               | 8            | 0.411281         | 28.4782           |
| 58      | 14                | 8               | 3            | 0.756629         | 17.7382           |
| 59      | 14                | 8               | 5            | 0.51965          | 24.7838           |
| 60      | 14                | 8               | 6            | 0.474631         | 26.891            |
| 61      | 14                | 8               | 7            | 0.45088          | 28,1945           |
| 62      | 14                | 8               | 8            | 0.436275         | 28 9817           |
| <i></i> |                   |                 | 5            | 0.100275         | 20.3017           |

Note: Green – Rich Mixture (>0.5)

Red – Acceptable Margin of PG Mass fraction(0.43<X<0.5) Black – Lean Mixture (<0.43) Yellow – Acceptable Outlet Velocity (>28.25)

Suggested Models for manufacturing: 10, 45, 62

Simulations for Barrel Size 14mm REQUIREMENT Outlet PG Mass fraction = 0.4237 Outlet Mixture Velocity = 24.36 ms<sup>-1</sup>

•

| Model  | PGinlet  |          |        | Outlet PG Mass | Outlet average |
|--------|----------|----------|--------|----------------|----------------|
| No     | Velocity | D.       | D.     | Fraction       | velocity       |
| 11-14- |          | U IN     | Pair   |                |                |
| Units  | m s -    | mm       | mm     |                | m s -          |
| 1      | 14       | 5        | 3      | 0.737026       | 18.1666        |
| 2      | 14       | 5        | 4      | 0.618312       | 21.2023        |
| 3      | 14       | 5        | 8      | 0.455132       | 28.033         |
| 4      | 15       | 5        | 3      | 0.736869       | 19.4707        |
| 5      | 15       | 5        | 4      | 0.61748        | 22.7209        |
| 6      | 15       | 5        | 5      | 0.528999       | 26.1023        |
| 7      | 15       | 5        | 6      | 0.482568       | 28.4212        |
| 8      | 16       | 5        | 4      | 0.617049       | 24.2643        |
| 9      | 16       | 5        | 5      | 0.528445       | 27.9365        |
| 10     | 16       | 5        | 6      | 0.48207        | 30.3872        |
| 11     | 16       | 5        | 8      | 0.453376       | 32.1356        |
| 12     | 14       | 6        | 3      | 0.77184        | 17.453         |
| 13     | 14       | 6        | 5      | 0.597566       | 21.8831        |
| 14     | 14       | 6        | 6      | 0.557387       | 23.2892        |
| 15     | 14       | 6        | 7      | 0.530696       | 24.3941        |
| 16     | 14       | 6        | 8      | 0.52354        | 24.6901        |
| 17     | 15       | 6        | 3      | 0.771335       | 18.6957        |
| 18     | 15       | 6        | 4      | 0.669756       | 21 1341        |
| 19     | 15       | 6        | 5      | 0 522693       | 26 4829        |
| 20     | 15       | 6        | 6      | 0.55626        | 25.0451        |
| 20     | 15       | 6        | 7      | 0.538064       | 26 1883        |
| 21     | 15       | 6        | ,<br>o | 0.528504       | 20.1005        |
| 22     | 15       | 6        | 0      | 0.321037       | 10.0526        |
| 23     | 10       | 6        | 3      | 0.771281       | 19.9520        |
| 24     | 10       | 6        | 4      | 0.0090         | 22.5/98        |
| 25     | 10       | 6        | 5      | 0.596344       | 25.00/1        |
| 26     | 16       | Б        | 6      | 0.555267       | 26.7219        |
| 27     | 16       | 6        | 7      | 0.528209       | 28.0027        |
| 28     | 16       | 6        | 8      | 0.521406       | 28.3238        |
| 29     | 14       | 7        | 3      | 0.820316       | 16.5997        |
| 30     | 14       | 7        | 4      | 0.734812       | 18.2537        |
| 31     | 14       | 7        | 5      | 0.673745       | 19.7023        |
| 32     | 14       | 7        | 6      | 0.639336       | 20.6223        |
| 33     | 14       | 7        | 7      | 0.621992       | 21.1453        |
| 34     | 14       | 7        | 8      | 0.606613       | 21.6951        |
| 35     | 15       | 7        | 3      | 0.820203       | 17.7882        |
| 36     | 15       | 7        | 4      | 0.734332       | 19.5621        |
| 37     | 15       | 7        | 5      | 0.673124       | 21.138         |
| 38     | 15       | 7        | 6      | 0.639066       | 22.1083        |
| 39     | 15       | 7        | 7      | 0.620858       | 22.6852        |
| 40     | 15       | 7        | 8      | 0.605322       | 23.3096        |
| 41     | 16       | 7        | 3      | 0.819234       | 18.9936        |
| 42     | 16       | 7        | 4      | 0.733455       | 20.8925        |
| 43     | 16       | 7        | 5      | 0.673007       | 22,5434        |
| 44     | 16       | 7        | 6      | 0.638256       | 23 6126        |
| 45     | 16       | 7        | 7      | 0.619995       | 24 2442        |
| 45     | 16       | 7        | ,<br>8 | 0.603866       | 24.2442        |
| 40     | 10       | /<br>9   | 2      | 0.003800       | 1/ 7011        |
| 4/     | 14       | <u> </u> | 3      | 0.940708       | 14./011        |
| 48     | 14       | ŏ        | 4      | 0.8/6192       | 15./15         |
| 49     | 14       | ð<br>C   | 5      | 0.786699       | 17.2512        |
| 50     | 14       | 8        | 6      | 0.729221       | 18.435         |
| 51     | 14       | 8        | 1      | 0.6888         | 19.3284        |
| 52     | 15       | 8        | 3      | 0.939987       | 15.8454        |
| 53     | 15       | 8        | 4      | 0.87609        | 16.8423        |
| 54     | 15       | 8        | 5      | 0.785511       | 18.4988        |
| 55     | 15       | 8        | 6      | 0.728116       | 19.7604        |
| 56     | 15       | 8        | 7      | 0.6868         | 20.7593        |
| 57     | 15       | 8        | 8      | 0.734299       | 19.3741        |
| 58     | 16       | 8        | 3      | 0.939464       | 16.9102        |
| 59     | 16       | 8        | 5      | 0.784664       | 19.7528        |
| 60     | 16       | 8        | 6      | 0.726751       | 21.1264        |
| 61     | 16       | 8        | 7      | 0.685131       | 22.1946        |
| 62     | 16       | 8        | 8      | 0.733144       | 20.7195        |

Simulations for Barrel Size 15mm REQUIREMENT Outlet PG Mass fraction = 0.4237 Outlet Mixture Velocity = 21.22 ms<sup>-1</sup>

| Model | PGinlet           |                 |      | Outlet PG Mass | Outlet average    |
|-------|-------------------|-----------------|------|----------------|-------------------|
| No    | Velocity          | D <sub>in</sub> | Dair | Fraction       | velocity          |
| Units | m s <sup>-1</sup> | mm              | mm   |                | m s <sup>-1</sup> |
| 1     | 15                | 6               | 8    | 0.492621       | 28.0021           |
| 2     | 15                | 5               | 8    | 0.396135       | 33.8783           |
| 3     | 15                | 4               | 8    | 0.337083       | 39.4551           |
| 4     | 11                | 4               | 8    | 0.306821       | 31.4639           |
| 5     | 11                | 5               | 8    | 0.337923       | 28.7563           |
| 6     | 11                | 6               | 8    | 0.34886        | 27.9328           |
| 7     | 10                | 4               | 7    | 0.319693       | 27.5613           |
| 8     | 10                | 5               | 7    | 0.33888        | 26.1218           |
| 9     | 10                | 6               | 7    | 0.348368       | 25.5142           |
| 10    | 9                 | 7               | 8    | 0.302265       | 26.2364           |
| 11    | 9                 | 8               | 8    | 0.303124       | 26.1512           |
| 12    | 9                 | 9               | 8    | 0.30125        | 26.2986           |
| 13    | 10                | 6               | 8    | 0.324166       | 27.2166           |
| 14    | 10                | 5               | 6    | 0.383584       | 23.3338           |
| 15    | 10                | 5               | 5    | 0.457147       | 19.8622           |
| 16    | 10                | 5               | 4    | 0.551604       | 16.765            |
| 17    | 10                | 5               | 3    | 0.684163       | 13.8503           |
| 18    | 11                | 5               | 5    | 0.475659       | 21.0675           |
| 19    | 11                | 6               | 6    | 0.413979       | 23.9268           |
| 20    | 11                | 6               | 7    | 0.37312        | 26.3184           |
| 21    | 11                | 6               | 8    | 0.34886        | 27.9328           |
| 22    | 11                | 6               | 9    | 0.33684        | 28.7908           |
| 23    | 11                | 4               | 4    | 0.546493       | 18.5997           |
| 24    | 11                | 4               | 5    | 0.449909       | 22.166            |
| 25    | 11                | 4               | 6    | 0.379062       | 25.9255           |
| 26    | 11                | 4               | 7    | 0.33286        | 29.2132           |
| 27    | 12                | 5               | 4    | 0.586445       | 19.0429           |
| 28    | 12                | 5               | 5    | 0.49273        | 22.2581           |
| 29    | 11                | 6               | 5    | 0.48805        | 20.5897           |
| 30    | 10                | 7               | 6    | 0.398832       | 22.5181           |
| 31    | 11                | 9               | 8    | 0.357933       | 27.3929           |
| 32    | 12                | 9               | 7    | 0.408287       | 26.4279           |
| 33    | 13                | 9               | 9    | 0.400442       | 29.0415           |

Note: Green – Rich Mixture (>0.5) Red – Acceptable Margin of PG Mass fraction(0.43<X<0.5) Black – Lean Mixture (<0.43) Yellow – Acceptable Outlet Velocity (>21.22) Suggested Models for manufacturing: 1, 24, 28