
 
 

International Journal of Social Statistics - USJ  
Volume 01 | Issue 02 | November, 2024 

84 | P a g e  

 

Time Series Modeling and Forecasting on Carbon dioxide 

Emission in Sri Lanka 
K.P.Hansika1* and N.R.Abeynayake2 

1,2Postgraduate Institute of Agriculture, University of Peradeniya 

pavanih92@gmail.com 

 

Abstract 

 

The continuous rise of anthropogenic carbon dioxide (CO2) atmospheric emissions is a 

major cause of global warming with adverse environmental effects. Most developed 

countries have a higher share of annual CO2 emissions in global emissions. As a 

developing country, Sri Lanka’s annual CO2 emission levels are lowest, but the total 

annual CO2 emission has increased at an annual growth rate of 5.06%. As a signatory of 

the Kyoto Protocol and the Paris Agreement, and being highly vulnerable to climate 

change, Sri Lanka commits to reduce its CO2 emissions. Valid database analysis of CO2 

emission modeling and forecasting in Sri Lanka will help to policy makers in reducing CO2 

emissions in Sri Lanka. In the present study, different Autoregressive Integrated Moving 

Average (ARIMA) models were developed to model the CO2 emission by using time series 

data from 1950-2019. The performance of these developed models was assessed with 

different selection measure criteria, and the model having the minimum value of these 

criteria was considered as the best forecasting model. Based on findings, ARIMA (0, 1, 1) 

is the best fitted model in predicting the emission of CO2 in Sri Lanka. Vector Auto 

Regressive with exogenous variable (VARX) model was used to assess the impact of 

energy consumption, GDP and urban population on CO2 emission in Sri Lanka with the 

time series secondary data from 1965 to 2019. Based on the results, the VARX (1,3) 

model was the best model for the relationship among these variables. 
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1. Introduction 

 

Atmospheric CO2 is the primary carbon source for life on earth. All living creatures 

produce this CO2 through respiration, decaying of organic material, combustion of fossil 

fuels and fermentation processes. Generally, the emission of CO2 to the atmosphere is 

balanced by the same amount being removed to the atmosphere by plant photosynthesis 

and by the oceans. Human activity has disturbed this equilibrium significantly by 

generating increased levels of CO2 from excessive consumption of fossil fuels, 

combustion and by deforestation. These imbalances have a greater impact on the 

enhanced greenhouse effect (Razmjoo and Davarpanah, 2019). Greenhouse effect is a 

natural process that warms earth’s surface by downward radiation of radioactive 

greenhouse gases which includes carbon dioxide (CO2), methane (CH4), nitrous oxide 

(N2O), hydrofluoro- carbons (HFCs), perfluorocarbons (PFCs) and sulphur hexafluoride 

(SF6) (EPA, 2014). This process of absorbing part of sun’s energy and re-radiation, 

maintain the earth temperature around 33oC and it may around 14oC without this 

greenhouse effect. Increasing the concentration of greenhouse gases due to 

anthropogenic emission has caused the enhanced greenhouse effect, referred to as 

global warming. Global warming is one of the biggest threats the world has faced in the 

recent centuries. In 2007, the Intergovernmental Panel on Climate Change (IPCC) 

reported that there would be an estimated rise in the average global temperature 

between 1.1oC and 6.4oC within the next 100 years. This cause adverse effects such as 
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melting of polar ice cap, sea level rise and ocean acidification which will hamper many 

eco systems.   

Among the greenhouse gases CO2 is the most dominant which accounted 77% of the 

total global greenhouse gas emission (Parry, 2007). According to environmental research, 

in 1960 CO2 level was about 270 (ppm) but it reached at 405 (ppm) in 2017 (Samreen 

et al, 2019). Increase in population, industrial revolution, urbanization aggravates the 

continuous rise in CO2 emission in most of the developed countries and have a much 

higher share in global emissions than the developing ones (Nebojsa, 1994). China is the 

Asia’s and the world’s largest emitter. It emits nearly ten billion tons each year, more than 

one-quarter of global emissions. North America is the second largest regional emitter at 

18% of global emissions. It’s followed closely by Europe with 17% (Hannah et al, 2020). 

Sri Lanka as a developing country is a low carbon emitting country with a global share of 

less than 0.1%. A recent analysis showed that Sri Lanka has achieved both high human 

development and managed to keep CO2 emissions below the long-term average needed 

to contain global warming targets of the Paris Agreement (Ministry of Environment, 2021). 

However, Sri Lanka’s total annual CO2 emission was increased from 3.1 million tons in 

1970 to 21.11 million tons 2020, growing at an annual growth rate of 5.06% (Knoema, 

2021). Due to this trending increment of CO2 emissions and highly vulnerable to climate 

change, Sri Lanka commits to reducing its CO2 emissions. Sri Lanka as signatory of the 

United Nations Framework Convention on Climate Change (UNFCCC) and Kyoto Protocol 

has made a significant contribution towards strengthening of national policy, legal and 

institutional capabilities to reduce the greenhouse gas emissions. To realize these 

policies and to implement action plans at the right time in future; valid database analysis 

is essential to identify the Sri Lanka’s CO2 emission path and make reliable prediction of 

its future emissions. The objective of this study is to model and forecast the CO2 emission 

in Sri Lanka by developing an analytical statistical time series model. Therefore in this 

study, the time series secondary data on total annual CO2 emission from 1950 to 2019 

were analyzed with ARIMA models to select the most appropriate model for prediction. 

Further, Vector Auto Regressive with exogenous variable VARX model was constructed to 

assess the impact of energy consumption, GDP and urban population on CO2 emission 

in Sri Lanka with the time series secondary data from 1965 to 2019. Forecasted values 

of CO2 emission in Sri Lanka were obtained from the most appropriate model. The results 

of the study can be used in policy making to implement necessary actions to minimize 

the effect of CO2 emissions by emphasizing environment friendly systems at the right 

time in future. 

2. Materials and Methods 

 

Materials 

 

In the present study, time series secondary data on total annual CO2 emissions in Sri 

Lanka from 1950 to 2019 were considered for modeling and forecasting CO2 emissions 

in Sri Lanka. Time series secondary data on energy consumption, GDP, and urban 

population in Sri Lanka from 1965 to 2019 were also considered for the construction of 

the VARX model. All the data was sourced from the World Bank online database. 

 

Methods 

 

ARIMA Model 

Box-Jenkins ARIMA, which is one of the commonly used methods of non-stationary time 
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series analysis of environmental, financial, energy and engineering data (Bowden and 

Payne, 2008 and Pappas, et al., 2008), was used in the analysis of total CO2 emission in 

Sri Lanka. The ARIMA model explains time series by its past or lagged values and 

stochastic error terms. ARIMA models use a combination of autoregressive (AR), 

integration (I), refers to the reverse process of differencing to produce the forecast and 

moving average (MA) operations (Box and Jenkins, 1970). 

Auto Regressive (AR) models forecast the variable of interest using a linear combination 

of   past values of the variable. AR model of order “p” denoted by AR (p) and is written as, 

Yt = C + 1Yt-1 + 2Yt-2 + 3Yt-3 +…+ pYt-p + t 

where, Yt is time series data, C is a constant, t is white noise, assumed to be 

independently distributed across time with mean 0 and variance σ2 and 1, 2,…,p are 

autoregressive coefficients. 

Moving Average (MA) model uses past forecast errors in a regression like model. MA 

model of order q, MA (q) can be written as, 

Yt = C- 1t-1- 2t-2 - 3t-3-…- qt-q+ t 

where, C is a constant, t is white noise and 1, 2,…,q are moving average (MA) 

coefficients. 

An ARMA model is the sum of an Autoregressive and Moving Average processes proposed 

by Box and Jenkins. Mathematically an ARMA model is defined by the following equation, 

Yt = C + 1Yt-1 + 2Yt-2 +…+ pYt-p+ - 1t-1- 2t-2 -…- qt-q 

One extension to the ARMA (p, q) model which greatly enhances the value as empirical 

descriptors of non-stationary time series is the class of autoregressive–integrated-moving 

average (ARIMA) models. The number of times ‘d’ that the integrated process must be 

differentiated to make stationary is said to be the order of the integrated process and is 

called non seasonal ARIMA (p, d, q) model which can be written as,  

Ỳt = C + 1Ỳt-1 + 2Ỳt-2 +…+ pỲt-p+ - 1t-1- 2t-2 -…- qt-q 

where, Ỳt is the differenced series. 

The steps followed to define an ARIMA model, as stated by Box & Jenkins, are determining 

the stationarity of the model, model identification, parameter estimation, diagnostic 

checking, and forecasting. Identification of non-stationarity of data series was done by 

the Augmented Dickey-Fuller (ADF) unit root test, where null hypothesis(H0): there is a unit 

root, which means data is not stationary and alternative hypothesis(H1): there is no unit 

root, which means data is stationary. Identification of specific number and type of 

parameters to be estimated using series plots, correlograms of autocorrelation (ACF) and 

partial autocorrelation (PACF). Mean Squared Error (MSE), Mean Absolute Percentage 

Error (MAPE) and Akaike Information Criteria (AIC) were used as model selection criteria 

to compare different parametric combinations of ARIMA (p,d,q) on the basis of minimum 

value. 

MSE = 
1

𝑛 
∑ |𝑒𝑡

2|𝑛
𝑡=1  where, et is forecast error 

MAPE = 
1

𝑛
∑ |𝑃𝐸𝑡|𝑛

𝑡=1  
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Where, PEt = 
𝑌𝑡−𝐹𝑡

𝑌𝑡
∗ 100 

PEt =Percentage Error at t time  

Yt= Observed value at t time  

Ft =Forecasted value at t time 

AIC = -2 log L + 2m where, L= Likelihood and m= number of parameters excepted 

After estimating a tentative model, diagnostic checking was done by generating the set 

of residuals and testing whether they satisfy the characteristics of a white noise process. 

A run chart and normal probability plot were carried out to check the randomness and 

normality of the residuals of selected models.  

If the characteristics of the white noise process are not satisfied, model re-selection and 

repetition from model identification, which is the second stage in the Box-Jenkins ARIMA 

procedure, are followed until the model's efficiency is achieved.  

VARX Model 

The VARX model is one of the statistical analyses frequently used in many studies 

involving time series data, used to model several endogenous variables interconnected 

and influenced by the previous time lags and between exogenous variables that affect 

the endogenous variable. Based on literature, energy consumption, GDP and the urban 

population were selected as the CO2 emission impact factors in Sri Lanka to develop VARX 

model. Total annual CO2 emission as an endogenous variable and energy consumption, 

as well as GDP and urban population (people living in urban areas as defined by national 

statistical offices) as exogenous variables, were considered in constructing the VARX 

model.  

VARX modeling is done by simultaneously estimating the VAR model and exogenous 

variables that influence the model. The general form of VARX model is as follows: 

Yt = c + ϕ1Yt−1 +…+ ϕpYt-p + β1ECt +…+ βpECt-p+ θ1GDt +…+ θpGDt-p + δ1UPt +…+δpUPt-p+ µt 

Where Yt represents current value of total CO2 emission, EC represents energy 

consumption, GD represents GDP, UP represents urban population and ϕ, β, θ, δ are the 

relevant coefficients.  

The optimal VARX model was selected using AIC values, and its stationarity was tested 

with an AR unit root test. 

The VARX model's diagnostic test is done by the multivariate extensions of the Jarque-

Bera residual normality test, which compares the residuals' third and fourth moments to 

those from the normal distribution. The null hypothesis of the test is that the residuals 

are multivariate normal, and the orthogonalization method selected was Cholesky of 

covariance (Lutkepohl). 

To test whether there is a correlation between residuals, the Portmanteau test was 

carried out. The null hypothesis is that there are no residual autocorrelations up to lag h. 

The null hypothesis is accepted if the p-value is greater than 0.05; thus, the residuals are 

not correlated. 

Forecasting of the estimated VARX model is done by solving the model in a deterministic 
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simulation where all equations in the model are solved so that they hold without error 

during the solution sample, all coefficients are held fixed at their point estimates and all 

exogenous variables are held constant at their historical values in the sample. The VARX 

model results are evaluated by calculating the MAPE value for the forecast results of 

testing data. 

 

3. Result and Discussion 

 
Table 1 Descriptive statistics of total annual CO2 emission in Sri Lanka from 1950-2019 

Description Statistic 

Mean 6.902571 

Median 3.885000 

Maximum 24.84000 

Minimum 1.420000 

Standard Deviation 6.056319 

Skewness 1.432886 

Kurtosis 4.151132 

 

Table 1 presents descriptive statistics of CO2 emissions in Sri Lanka. The wide gap 

between the minimum CO2 emission (1.42 million tons in 1956) and the maximum CO2 

emission (24.84 million tons in 2019) implies that the CO2 emission series is sharply 

trending upwards. The skewness is 1.432886, where it is positively skewed and non-

symmetric. Kurtosis is 4.151132, indicating that the CO2 emission data series is not 

normally distributed. 

 

Modeling and forecasting CO2 emission in Sri Lanka  

 

To identify the CO2 emission pattern in Sri Lanka, a time series plot was created for the 

data obtained from 1950 to 2019 (Figure 1). Time series plot of total CO2 emission shows 

an increasing trend. 

 
Figure 1 Time series plot for total CO2 emission (million ton) from year 1950 to 2019 
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ARIMA Model 

 

A common assumption in ARIMA modeling and forecasting is that the data are stationary. 

Time series plot of total CO2 emission revealed that the series was non-stationary as it 

displays a trend or random walk behavior, and the variance was not constant over time. 

Log transformation was applied to stabilize the variance (Figure 2). Results of the 

Augmented Dickey-Fuller unit root test confirm that the transformed series of CO2 

emission was not stationary, so that the series was differenced once and the null 

hypothesis (data is non-stationary) of the test was rejected at first difference for the 

transformed series (Table 2) which confirms that the series is stationary. 

 
Figure 2 Time series plot of transformed data of CO2 emission from year 1950 to 2019 

 
 

Table 2 Augmented Dickey Fuller Unit Root test for data of total annual CO2 emission in Sri Lanka 

before and after differentiation 

Variable Type P value of level data P value after 1st 

differencing 

Total annual CO2 

emission 

Intercept 0.9711 0.0001 

Trend & intercept 0.4812 0.0000 

None 0.9967 0.0000 

 

After making the series stationary, different parametric combinations of the ARIMA (p, d, 

q) model were tried to analyze the seventy-year data (1950 to 2019) of CO2 emission. 

The best-fitted model was accepted based on the minimum value of the selection criteria 

as per the methods. The results of the performance of the developed ARIMA (p, d, q) 

models with minimum MS, MAPE, and AIC values were presented in Table 3. 

 
Table 3 Performance of developed ARIMA (p, d, q) models 

Model 
Model Selection Criteria 

MS MAPE AIC 

ARIMA (0,1,1) 

 
0.002716 8.50962 -3.042003 

ARIMA (0,1,2) 

 
0.002749 8.51219 -2.993164 
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ARIMA (1,1,0) 

 
0.002740 8.51973 -3.025765 

ARIMA (1,1,1) 

 
0.002749 8.50421 -3.005615 

ARIMA (1,1,2) 

 
0.002791 8.51204 -3.00721 

ARIMA (2,1,0) 

 
0.002756 8.49669 -3.005290 

ARIMA (2,1,1) 

 
0.002790 8.52686 -3.021753 

ARIMA (2,1,2) 

 
0.002748 8.44277 -3.110268 

ARIMA (3,1,0) 
0.002764 

 
8.60359 -2.992831 

ARIMA (3,1,1) 
0.002797 

 
8.31800 -3.007294 

ARIMA (3,1,2) 
0.002255 

 
7.24933 -2.963012 

  

According to Table 3, the lowest MAPE value was reported on ARIMA (3,1,2), but the 

parameters were insignificant in that model. (p value 0.566 > 0.05 for AR 3) ARIMA 

(2,1,2) and ARIMA (0,1,1) are the following two models having the minimum value of all 

selection criteria. Out of which all the parameters were significant in the model ARIMA 

(0,1,1) as in ARIMA (2,1,2) the p value of AR 2 component was not significant (0.191). 

Therefore, it was concluded that the appropriate model for forecasting the CO2 emission 

in Sri Lanka is ARIMA (0, 1, 1), which has a constant minimum selection criteria value and 

significant parameters compared to other models. The final estimates of parameters of 

developed ARIMA (0, 1, 1) model were presented in Table 4. P values at lags 12, 24, 36 

and 48 were above 0.05 in Modified Box-Pierce (Ljung-Box) Chi-Square statistic revealed 

no auto correlation in residuals (Table 5). 

 
Table 4 Final estimates of parameters of ARIMA (0 1 1) model 

Type Coef. SE Coef. T P value 

MA1 0.2449 0.1185 2.07 0.043 

Constant 0.017172 0.004739 3.62 0.001 

 
Table 5 Modified Box-Pierce (Ljung-Box) Chi-square statistic of ARIMA (0 1 1) model 

Lag 12 24 36 48 

Chi-square 12.2 14.2 25.5 35.3 

DF 10 22 34 46 

P value 0.272 0.896 0.852 0.875 

 

Diagnostic checking 

  

The residuals of the model ARIMA (0,1,1) were tested for normality and randomness. The 

normal probability plot and Run Chart proved that the residuals were random (Cluster 

probability is 0.729) and normal (Anderson Darling p = 0.256). Figures 3 and 4 represent 

the relevant graphs. 
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Figure 3 Run chart for residuals 

 
 

Figure 4 Probability plot for residuals 

 
 

ARIMA (0,1,1) was the appropriate model amongst all models tested, for predicting the 

CO2 emission in Sri Lanka. The ARIMA (0,1,1) model with constant has the prediction 

equation of,  

 

Yt = C + Yt-1- θ1et-1  

Yt = 0.017172 + Yt-1- 0.2449et-1  

 

Yt is forecasted value, C is constant, θ1 is MA co-efficient and et-1 is MA component. 

 

The model performed well in explaining variability in the data series and in its predicting 
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ability. The forecasted values of total CO2 emissions (million tons) in Sri Lanka from 2020 

to 2025 were obtained using the best-fitted model ARIMA (0,1,1) (Table 6).  

 
Table  6 Forecast of  CO2 emission (million tons) in Sri Lanka using ARIMA (0,1,1) during 2020 to 

2025 (* 95% confidence interval) 

Year Forecast Lower* Upper* 

2020 25.6626 20.2829 32.4691 

2021 26.6975 19.8811 35.8509 

2022 27.7741 19.6866 39.1850 

2023 28.8948 19.6155 42.5628 

2024 30.0601 19.6304 46.0310 

2025 31.2723 19.7088 49.6204 

 

In 2037, total CO2 emission in Sri Lanka will be 50 million tons according to the prediction 

equation. This implies that Sri Lanka will continue to face challenges of global warming 

and be more susceptible to climate change shortly. By using this prediction equation, Sri 

Lanka can be better prepared and aware when controlling the emissions in future. 

However, total carbon emissions of most countries worldwide, including Sri Lanka, were 

reduced in 2020 compared to 2019 due to lockdowns in the first half of the year during 

the COVID-19 pandemic. These kinds of situations may affect the accuracy of the model. 

However, according to Bhanumati, 2022 global CO2 emissions will be back above the 

pre-pandemic levels again in 2021, which suggests many deviations from the prediction 

models. 

 

Construction and Testing of VARX model 

 

Correlograms of ACF and PACF and the results of the Augmented Dickey-Fuller (ADF) unit 

root test shows that the three variables, energy consumption, GDP and urban population 

were not stationary, so that they were differenced, then viewed the ACF and PACF plots 

again and the formal results of the Augmented Dickey-Fuller unit roots. Results of the ADF 

test are presented in Table 7. 

 
Table 7 Augmented Dickey Fuller Unit Root test for energy consumption data, GDP and urban 

population before and after differentiation. 

Variable Type P value of level 

data 

P value after 1st 

differencing 

P value after 

2nd differencing 

Energy 

consumption 

Intercept 

Trend & intercept 

None 

0.9999 

0.9785 

1.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

GDP Intercept 

Trend & intercept 

None 

1.0000

   

1.0000 

1.0000 

1.0000 

0.5247 

0.0242 

0.1881 

0.0000 

0.0000 

0.0000 

Urban 

population 

Intercept 

Trend & intercept 

None 

0.8669 

0.2147 

0.9284 

0.5264 

0.9211 

0.3824 

 

0.0000 

0.0000 

0.0000 

 

The optimal lag order of the VARX model was determined before constructing the VARX 

model. Lag order refers to the number of previous observations in time series used as 



 
 

International Journal of Social Statistics - USJ  
Volume 01 | Issue 02 | November, 2024 

93 | P a g e  

 

predictors in the VAR model. Models with different lag orders with CO2 emission as 

endogenous variable and energy consumption, GDP and urban population as exogenous 

variables were constructed through Eviews8 software. Selection of an appropriate lag is 

critical to build a parsimonious model as using too few lags can result in autocorrelated 

errors whereas using too many lags results in over-fitting, causing an increase in mean 

square forecast errors of the VAR model. The lag length for the VAR (p) model was 

determined using model selection criteria by fitting VAR(p) models with orders p = 0, 1, 

…, pmax and choosing the value of p which minimises the AIC, which is one of the 

commonly used model selection criteria. It was obtained that the smallest AIC value from 

the VAR analysis using the CO2 emission in the lag 4 amounted to -3.240481 and lag five 

amounted to -3.241634. Lag 4 was selected to include in the model as there is not much 

more difference in the AIC value, and using a longer lag will result in more forecast errors. 

Then after over fitting from VARX (1,1) to VARX (4,3), the AIC values of each model are 

obtained as follows (Table 8). 

 
Table 8 Overfitting VARX models 

VARX model AIC value 

VARX (1,0) -3.165220 

VARX (1,1) -3.153763 

VARX (1,2) -3.146833 

VARX (1,3) -3.295259 

VARX (2,0) -3.123166 

VARX (2,1) -3.132057 

VARX (2,2) -3.115098 

VARX (2,3) -3.278617 

VARX (3,0) -3.085118 

VARX (3,1) -3.087767 

VARX (3,2) -3.082664 

VARX (3,3) -3.246259 

VARX (4,0) -3.240481 

VARX (4,1) -3.250343 

VARX (4,2) -3.238149 

VARX (4,3) -3.274274 

 

Based on the AIC values of the VARX models estimated in Table 8 above, the smallest AIC 

value was obtained in VARX (1,3), which was selected as the optimal model. To test 

whether the selected VARX model is effective, the AR unit root test was used to test its 

stability. As shown in the graph of AR root test results of the VARX model (Figure 5), the 

characteristic roots were all in the unit circle, indicating that the VARX model is stable. 

 

Diagnostic Checking of selected VARX model 

 

The residual normality test results (orthogonalization: Cholesky of covariance) revealed 

that the residuals are multivariate normal as the probability values are greater than 0.05 

and the null hypothesis is not rejected (Table 9). 

 

Based on the results of the Portmanteau test, almost until the 12th lag had a p-value 

greater than 0.05, which indicates that the residuals are not correlated (Table 10). 
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Figure 5 Inverse roots of AR characteristic polynomial of VARX (1,3) 
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Table 9 Results of the residual normality test (orthogonalization: Cholesky of covariance) 

Component Skewness Chi-sq df Prob. 

     
     1 -0.312557 0.814100 1 0.3669 

     
     Joint  0.814100 1 0.3669 

     
          

Component Kurtosis Chi-sq df Prob. 

     
     1 2.702164 0.184805 1 0.6673 

     
     Joint  0.184805 1 0.6673 

     
          

Component Jarque-Bera df Prob.  

     
     1 0.998904 2 0.6069  

     
     Joint 0.998904 2 0.6069  
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Table 10 Results of the Portmanteau test 

      
Lags Q-Stat Prob. Adj Q-Stat Prob. df 

      
      1 0.268997 NA* 0.274487 NA* NA* 

2 0.419910 0.5170 0.431687 0.5112 1 

3 0.565531 0.7537 0.586604 0.7458 2 

4 3.231374 0.3573 3.484259 0.3228 3 

5 3.352448 0.5007 3.618786 0.4600 4 

6 4.973448 0.4191 5.460831 0.3623 5 

7 10.14918 0.1185 11.47913 0.0747 6 

8 13.24583 0.0663 15.16561 0.0339 7 

9 13.26382 0.1031 15.18756 0.0556 8 

10 13.41126 0.1449 15.37185 0.0812 9 

11 15.06955 0.1295 17.49786 0.0640 10 

12 16.32148 0.1296 19.14514 0.0585 11 

      
 

Forecasting and evaluation of VARX model 

 

Solving the model over the forecast period achieved a forecast from the VARX. Upon 

solving the model, forecasted values were created for the endogenous variable: total 

annual CO2 emission (Figure 6). 

 
Figure 6 Forecasted values of CO2 emission from VARX (1,3) 
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The MAPE value for CO2 emission was 5.11325, which is less than 10%, and the VARX 

(1,3) model has excellent forecasting capabilities. So, the VARX (1,3) model can be used 

to forecast total annual CO2 emissions in the future. 

 

Conditional forecasts with alternative scenarios were generated by defining new 

scenarios and specifying the time path of the exogenous variables under that scenario. 

There are three scenarios to examine what would happen if those values are higher than 

in the baseline forecast, assuming that the energy consumption, GDP and urban 

population values are 10% higher since 2000. This is done by overriding the values of 

exogenous variables during the forecast horizon and solving the model under new 

scenarios. The resulting forecasts under the baseline (unconditional forecast) and 

alternative (conditional) forecast for CO2 emission were obtained under scenario 1, 

scenario two and scenario three, which represents the override forecast values of energy 

consumption, GDP and urban population respectively (Figure 7,8,9). 

 
Figure 7 Conditional forecasts for CO2 emission under alternative scenario (scenario1): energy 

consumption values are 10% higher than the actual values since 2000 
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Figure 8 Conditional forecasts for CO2 emission under alternative scenario (scenario2): GDP 

values are 10% higher than the actual values since 2000 
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Figure 9 Conditional forecasts for CO2 emission under alternative scenario (scenario3): urban 

population values are 10% higher than the actual values since 2000 
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There is no deviation in CO2 emission forecasts for scenario 1 (increase of energy 

consumption) and scenario 2 (increase of GDP) from baseline forecasts, but the increase 

in urban population has led scenario 3's forecasts for CO2 emission to shift upward 

compared to baseline. 

 

4. Conclusion 

 

Based on the results obtained, it is concluded that the ARIMA (0, 1, 1) model, which had 

the minimum value of all the selection criteria, was the most appropriate model for 

forecasting the CO2 emission in Sri Lanka. Using the model ARIMA (0, 1, 1) forecasted 

CO2 emission in Sri Lanka were 27.7741 million tons, 28.8948 million tons, 30.0601 

million tons and 31.2723 million tons in the years 2022, 2023, 2024 and 2025 

respectively. Based on the results of the analysis of the relationship between the 

endogenous (annual CO2 emission) and exogenous variables (energy consumption, GDP 

and urban population), the VARX (1,3) model was found to be the best model for the 

relationship among these variables. This study will help the government of Sri Lanka, 

especially when it comes to short-term and long-term planning, and for policy makers to 

shape up the policies to take necessary actions to reduce the CO2 emission in Sri Lanka. 

The study results may be applied to the design and implementation of the energy audit 

concept, energy management and the energy conservation practices. 
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