Vidyodaya J., Sci., Vol. 1, Nos. 1 & 2 - July 1989 - pp. 105-111

A GENETIC STUDY OF TWO SEX-LINKED RECESSIVE MUTANTS, MARGINAL CELL LESS (MCL) WING AND CUT (CT) WING OF DROSOPHILA ANANASSAE.

B. G. D. N. K. DE SILVA

Department of Zoology, University of Sri Jayewardenepura, Nugegoda.

Abstract

The present study was made in order to carry out further genetic investigations of two mutants ct wing and mcl wing isolated by Bogahawatta in 1982. These two mutants were observed to be recessive and sex-linked, but were also seen not to strictly obey Mendelian rules. In the absence of the wild allele the mutants allele behaves in a peculiar manner. Each mutant allele is capable of producing all the types of mutants such as ct wing mcl wing, and ct-mcl wing along with the wild types. The most probable explanation for this peculiar behaviour is that these two allele are unstable.

Introduction

Drosophila ananassae is the most abundant drosophilid species in Asia and Sri Lanka. Genetic studies on this species have been in progress since 1930, particularly in Japan. In Sri Lanka Genetic studies of *D.ananassae* were started in 1981 by Ratnayake and Bogahawatta with the initiation of a survey of mutant alleles in the wild population and the estimation of their mutant load. (Bogahawatta, 1984).

The present study is a part of this programme. The objective was to carry out further genetic investigations on two visible sex-linked mutations namely, $\operatorname{cut}(ct)$ wing and marginal cell less (mcl) wing isolated by Bogahawatta in 1982.

Even though there were no previous records of cut (ct) wing mutants of *Drosophila* in Sri Lanka, there were five other instances recorded in other parts of the world. (Kikkawa, 1933, 1937; Moriwaki, 1936, 1971) In all the above instances the cut (ct) wing has been recorded as a recessive sex-linked mutant. The marginal cell less (mcl) mutant has not been recorded anywhere in the world before.

In the present study, these two mutants did not strictly obey the Mendelian rules, but it could be inferred that they behave as sex-linked recessive mutants.

Materials and Methods

The cut (ct) wing mutant is clearly distinguishable from the other wing mutants by the appearance of the wing tip which looks as if cut by a pair of scissors. But there are three patterns of this mutant (see Fig. 1) in

106 Two sex-linked recessive mutants of Drosophila ananassae

the present stock. These three types also differ from each other in the extent of the area of the cut. However, all three types were considered as cut (ct) wing mutants in the present study.

Marginal cell—less (mcl) mutant showed the absence of the marginal cell of the wing. Here too there were variations. (See Fig. 2) Sometimes instead of the entire marginal cell, only a portion of the marginal cell or even the marginal vein was found to be snipped off. In this case, too, all these aberrant types were considered as the *mcl*. mutant.

Perhaps these variants of the two mutants may be due to variabilities in their expressivity.

In order to study the pattern of inheritance of these mutants, the following crosses were made. In each case pair matings were carried out.

- Cross 1. wild type male $\times ct$ wing female
 - 2. ct wing male \times wild type female
 - 3. The wild flies obtained from the cross 2 were intercrossed
 - 4. wild type male \times mcl wing female
 - 5. mcl wing male \times wild type female
 - 6. The wild type flies obtained from the cross 5 were intercrossed
 - 7. ct wing male \times ct wing female
 - 8. mcl wing male \times mcl wing female
 - 9. The wild type flies obtained from cross 7 were intercrossed
 - 10. The wild type flies obtained from cross 8 were intercrossed
 - 11. wild type male \times wild type female (from ct Stock)
 - 12. wild type male × wild type female (from mcl stock)
 (wild type male flies, were obtained from the wild population But wild type female flies in cross 11 and 12 were obtained from ct wing and mcl wing mutant stocks respectively.
 - 13. ct wing male \times mcl wing female
 - 14. mcl male \times ct wing female.

The standard culture medium for *Drosophila* was used and all experimental crosses were carried out at room temperature which ranged from $26^{\circ}C - 31^{\circ}C$.

B. G. D. N. K. de Silva

Figure 1: A, B, C, Patterns of et wing mutant

Figure 2: D, E, F, Patterns of mel wing mutant

Results

The results obtained from the crosses (1 - 14) are presented in the following Table.

			Expected								Unexpected							
*		Cross	wild S	type Q	ct đ	wing Q	mcl v đ	ving Q	ct-mcl ð	wing ♀	wild ð	type Q		in g ♀	mcl ð	wing Q	ct-mcl ð	wing Q
	01.	Wild type of x ct wing Q		384	198						57				38	3	116	*
		et wing \mathcal{J} x wild type \mathcal{Q}	297						. •	12								
		$\mathbf{F}_{\mathbf{I}}$ wild type $\mathcal{J} \times \mathbf{F}_{\mathbf{I}}$ wild type \mathcal{Q}	525	890	136										29		143	
		wild type $\delta \mathbf{x}$ mel wing \mathbf{Q}		3 57			184				76		30				48	
		mel wing 3 x wild type Q	276	287					•	ч,					2			
•		$\mathbf{F}_{\mathbf{I}}$ wild type $\mathcal{J} \times \mathbf{F}_{\mathbf{I}}$ wild type \mathcal{Q}	519	699			61						70				79	
		ct wing 3 x ct wing 2			114	94				u *	15	26			02	2 05	5 87	89
2	08.	mel wing & x mel wing Q				P	120	149)	<u>_</u>	47	36	03	05	,		09	. 05
	09.	$\mathbf{F}_{\mathbf{I}}$ wild type $\mathcal{J} \times \mathbf{F}_{\mathbf{I}}$ wild type \mathcal{Q}	36	51									95	96	19	9 18	3 20	13
	10,	$\mathbf{F}_{\mathbf{I}}$ wild type $\mathcal{J} \times \mathbf{F}_{\mathbf{I}}$ wild type \mathcal{Q}	65	104						÷			08	02	58	8 62	2 28	. 10
	11.	wild type \mathcal{J} x wild type \mathcal{Q} (from <i>et</i> wing stock)	50	268							1		116		15	;	76	
	12.	wild type \mathcal{J} x wild type \mathcal{Q} (from mel wing stock)	43	168							· .		12		85	5 .	25	
	13.	et wing of x mel wing Q		53			40				3 8		54	25	•	24	4 29	43
	14.	mel wing of x et wing Q		98		82					66		· .	.26	5 27	7 19	32	28

TABLE 1-PHENOTYPES OF THE F, AND F2 PROGENY

a, b, c, d, The wild flies obtained from the crosses 02,05,07,08 were intercrossed respectively.

e., f, wild type male flies were obtained from the wild population. But wild type female flies in cross.

11 and 12 were obtained from et wing and mel wing mutant stock respectively. Results of all crosses carried out in this study.

108

Two sex linked recessive mutants of Drosophila ananassae

B. G. D. N. K. de Silva

As ct is a sex-linked recessive mutant, from the cross 1 (wild type male x ct wing female) only ct males and wild females are expected in the F_1 generation. But the results show that apart from ct males, mcl, ct-mcl and wild type males too have appeared. However, the percentage of the females is as expected. In the reciprocal cross (ct male x wild female), only wild type males and females were obtained as expected. In cross 3 all F_2 female progeny are wild type, whereas the males are of all types with wild type males predominating. ct wing and ct-mcl wing mutants show more or less the same percentages.

These results also appear very similar to obtained with the mcl wing mutant. (cross 4-6)

It can be concluded from these data that both mutants ct wing and mcl wing behave more or less similarly in their inheritance patterns. The phenotypic expression of the two mutants are completely suppressed in the presence of the wild allele. When the wild allele is not present, the phenotypic expression varies. The phenotypes can be ct wing, ct-mcl wing, mcl wing or even wild type.

Cross 7 and 8 clearly show that the F_1 progeny of the *ct* wing and *mcl* wing colonies comprised the various mutant forms: *ct. ct-mcl*, and *mcl*. Further in both these colonies wild type flies too appear in the F_1 generation. However, the ratios of the 4 phenotypes appearing in the F_1 generation differ in the two mutant types.

In the ct wing colony, the percentage occurence of ct wing and ct-mcl wing phenotypes in the F_1 generation, is comparatively higher than that in mcl colony, whereas in the mcl colony mcl wing and wild type phenotypes occur at a higher percentage.

The remarkable feature of the results of crosses 7 and 8 is the appearance of wild flies in the F_1 generation. In crosses 9-12, the data clearly show that these wild flies are not true breeders for the wild character. They are indeed homozygotes for the respective mutant characters but not fully expressing them phenotypically.

Discussion

ct wing and mcl wing are two visible mutants of Drosophila ananassae isolated in Sri Lanka by Bogahawatta in 1982. The ct wing mutant is clearly distinguishable from the other wing mutants by the appearance of the wing tip which looks as if cut by a pair of scissors. The mcl wing mutant character is where the marginal cell of the wing is entirely or in part missing.

The results of the present study clearly indicate that the two mutants ct wing and mcl wing are recessive and sex-linked. The phenotypic expression of these mutants are clearly marked by the presence of alternative wild alleles.

110 Two sex-linked recessive mutants of Drosophila ananassae

In the absence of respective wild alleles the phenotypic expressions of the mutant types were variable. Both *ct* wing and *mcl* wing alleles in the absence of the wild counterparts produced all types of mutants *ct* wing, *ct-mcl* wing, *mcl* wing. They also produced wild types.

	Percentage											
Cross	$\begin{array}{c} ct \text{ wing } mcl \text{ wing } wild \text{ type } ct\text{-mcl wing} \\ \vec{\sigma} & \vec{\varphi} & \vec{\sigma} & \vec{\varphi} & \vec{\sigma} & \vec{\varphi} \\ \vec{\sigma} & \vec{\varphi} & \vec{\sigma} & \vec{\varphi} & \vec{\sigma} & \vec{\varphi} \\ \end{array}$											
$7-ct \text{ wing } \eth \times ct \text{ wing } \wp$	26.4 21.7 0.5 1.2 3.5 6.0 20.2 20.6											
8-mcl wing $\mathcal{S} \times mcl$ wing φ	0.8 1.3 32.1 39.8 12.5 9.6 2.4 1.3											

Table 11 — Percentage of F_1 phenotypes of crosses 7 & 8

The mutant allele at the ct locus in the absence of the wild allele gave rise to more ct wing and ct-mcl wing flies, whereas the allele at mcl locus gave rise to more mcl wing and wild flies. In both these cases the wild offspring produced can be considered as pseudo – wild phenotypes, because when intercrossed, they themselves behaved as homozygotes of the respective mutant types. The ct-mcl double mutant too acts as ct wing and mcl wing mutants but with slight changes in the percentage occurrence of the same phenotypes (ct wing and ct-mcl wing).

Therefore, it is possible to consider these two mutants as being due to a single mutant gene whose phenotypic appearance is seen to differ.

The most probable mechanism that can explain the peculiar mode of inheritance of this single mutant is Gerasimova's (1983) description which was given to explain the mutation at the *ct* locus of *D. melanogaster*. According to him the induced $ct \not\vdash mR2$ mutant allele of *D. melanogaster* can change into ct^+ (wild type) with time. Therefore, according to these revertants 3 groups were recognized by him as stable, unstable, and superunstable mutants.

He further reported that new ct alleles could not be obtained from stable groups, but could be obtained from the other two groups in a few generations of inbreeding.

In the present case too, it became evident that this single mutant behaves as an unstable mutant expressing itself as *ct. mcl, ct-mcl* or even as wild type.

The fact that such unstable genes are present have been recently demonstrated at the molecular level with regard to the white-eye mutant in *D.melano*gaster. (Bingham et. al. 1982).

Acknowledgements

I wish to express my grateful thanks to Professor Winston E. Ratnayake, Head, Department of Zoology, University of Sri Jayewardenepura, for suggesting this study, for the supervision and for his invaluable advise and kind cooperation extended to me during the course of this study.

I am also thankful to Mr. J. Wijeratne, Research Assistant, Department of Zoology, University of Sri Jayewardenepura, for providing me with *Drosophila* cultures and for helping me at the initial stages of this research project.

This work was carried out in partial fulfilment of the requirements for B.Sc. (Special) Degree in Biology of the Faculty of Applied Science, University of Sri Jayawardenepura, Nugegoda.

References

- 1. Bingham, P.M. Kidwell, M.G. and Rubin, G.M. (1982). The cloning of the DNA sequences from the white locus of *Drosophila melanogaster* using a novel and general method. Cell 25, 693-704.
- Bogahawatta, C.N.L. (1984), Isolation of visible genetic mutants of *Drospophila ananassae* in Sri Lanka. Thesis sumbitted for the M.Sc. Degree, University of Sri Jayewardenepura, Sri Lanka.
- 3. Gerasimova, T. I. (1983) Superinstability of insertion mutations at the cut locus in *Drosophila melanogaster* and simultaneous reversion of two unstable alleles at the carmine and cut loci in *Drosophila melanogastere*. Dropsophila Information Service 59:36, 59:37.
- 4. Kikkawa, H. (1937) studies on the Genetics and cytology of *Drosophila ananassae*. Genetica 52, 458-516.
- 5. Moriwaki and Tobari, Y.N. (1975), . In hand book of Genetics''ed. R.C. King Vol13, Chapter on D. ananassae 513-534.