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Abstract 

In today’s digital era, the significance of speech recognition technology cannot be overstated as it 

plays a pivotal role in enabling human-computer interaction and supporting various applications. This 

paper focuses on the development of a real-time subtitle generator for Sinhala speech using speech 

recognition techniques. The CMUSphinx toolkit, an open-source toolkit based on the Hidden Markov 

Model (HMM), is employed for the implementation of the application. Mel-frequency cepstral 

coefficients (MFCC) are utilized for feature extraction from the given ’wav’ format recordings. The paper 

places significant emphasis on the importance of a real-time subtitle generator for Sinhala speech and 

explores the existing literature in the field. It outlines the objectives of the research and discusses the 

achieved outcomes. By fine-tuning hyperparameters to enhance the recognition accuracy of the system, 

impressive results of 88.28% training accuracy and 11.72% Word Error Rate (WER) are attained. The 

significance of this research is underscored by its methodological advancements, robust performance 

metrics, and the potential impact on facilitating seamless interactions and applications in the Sinhala 

speech domain.  

Keywords: Speech recognition, Real-time, Subtitle, CMUSphinx, Open source, Hidden Markov Model, 

Mel-frequency cepstral coefficients, ’wav’, Accuracy, Word Error Rate 

 

1. Introduction 

In the contemporary era, the internet and television have evolved into indispensable tools for 

knowledge acquisition, relying extensively on video content often complemented by subtitles. Subtitles, 

essential for individuals such as the hearing impaired, non-native speakers, and subtitle enthusiasts, come 

in two forms: real-time and non-real-time. While non-real-time subtitles are commonly used for pre-

recorded content, they prove inefficient for live broadcasts or online meetings. Real-time subtitles, 

generated instantly through computer algorithms, offer a solution to this limitation, enhancing efficiency 

for both live and recorded content. 

Despite real-time subtitle applications being available for certain languages, Sinhala, a prominent 

language, lacks such a tool. This absence underscores the need for a real-time Sinhala subtitle generator, 

particularly beneficial for individuals facing hearing impairments or seeking an immediate and seamless 

viewing experience. As the aging population often contends with sensory challenges, a real-time Sinhala 

subtitle generator could prove invaluable, facilitating effortless participation in online meetings and 

television viewing. 

This study addresses the absence of a real-time Sinhala subtitle generator and aims to construct an 

efficient tool specifically designed for Sinhala speech. The primary objectives are to design and develop 

a software module for accurate Sinhala voice recognition, to convert recognized Sinhala voice into Sinhala 

Unicode text script, employing a dedicated database for mapping, to develop a real-time file generation 

system to save Sinhala text recognized from voice and to create a computer application for seamless 

integration of Sinhala text with video in real-time. 

The application's success hinges on accurately identifying Sinhala alphabet letters and 

understanding the language's unique structural modifications. Unlike English, Sinhala requires specific 

modifications for each letter, posing challenges for accurate recognition. Additionally, variations in 

speakers' voices, influenced by mood and environment, contribute to the complexity of speech 

recognition, adding to the difficulty of accurate word recognition. 
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The literature emphasizes the significance of large vocabulary speech recognition systems, with 

open-source options like the Sphinx toolkit standing out (Gaida, et al., 2014). Comparative studies 

between speech recognition engines, such as CMUSphinx and Mozilla DeepSpeech, highlight the 

importance of performance and resource efficiency (Ramani, Rao, Vidya, & Prasad, 2020). Research also 

explores advancements in decoder algorithms, including recurrent neural network (RNN) encoder-decoder 

approaches for continuous large vocabulary speech recognition (Ramani, Rao, Vidya, & Prasad, 2020) 

(Toshniwal, et al., 2018). 

Several projects have focused on Sinhala speech recognition, employing tools like the Sphinx 

toolkit (Gunasekara & Meegama, 2015). These initiatives range from real-time translation to bidirectional 

conversion algorithms and web-based speech-to-text translators (Punchimudiyanse & Meegama, Web 

based automated speechto-text translator for the sinhala language, 2016). Notable efforts include the 

development of a Sinhala Interactive Voice Response (IVR) system and the exploration of continuous 

speech recognition using artificial neural networks (Nallathamby, Kariyawasam, Pullaperuma, Vithana, 

& Jayasena, 2011). 

This research aims to contribute to the growing field of speech technologies (Sandasarani, 2015) 

by developing a real-time Sinhala subtitle generator. The outlined objectives and comprehensive review 

of related work lay the foundation for advancing accessibility and user experience in Sinhala video content 

consumption. 

 

2. Methodology 

 

2.1. Introduction to Hidden Markov Model 

HMM is a probabilistic graphical model that allows the computation of the joint probability of a 

set of unknown variables (hidden states) given a set of observed states. The hidden states, also known as 

latent states, are selected based on the highest probability of the joint sequence. This model relies on the 

inference based on the Markov process assumption; hence it is referred to as the ‘Hidden Markov Model’. 

The advantage of this model is that it only requires the present state to predict the future state, without 

relying on past information. 

Typically, ‘states’ refer to the hidden states, while ‘observations’ refer to the observed states. As 

mentioned earlier, to calculate the joint probability of the sequence of hidden states, three types of 

information are needed: transition probability (the probability of transitioning to a new state conditioned 

on a present state), emission probability (the probability of transitioning to an observed state conditioned 

on a hidden state) and initial state probability (the initial probability of transitioning to a hidden state 

which  can also be looked at as the prior probability). 

 

2.2.  Main Theory of the Hidden Markov Model in Speech Recognition Sector 

The main purpose of a speech recognition application is to create a text sequence based on input 

voice. A statistical model like Hidden Markov Model (HMM) can be used for this process. By using 

HMM, the application can identify hidden states and observable states. 

To generate observable states, a voice clip is used, and the features of the voice are extracted using 

methods like MFCC (Mel Frequency Cepstral Coefficients). These extracted features serve as the 

observable states of the HMM. 
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The hidden states in speech recognition are phonemes, which are the basic units of sound in 

language. HMM transitions between hidden states to find the best phoneme sequence for the extracted 

features. From this phoneme sequence, relevant word sequences are formed. 

Several important models aid in finding the best phoneme sequence. The language model handles 

word sequences’ likelihood, considering factors such as “I write a thesis” being more likely than “Me 

write a thesis.” The pronunciation model converts words to phonemes, while the acoustic model models 

a sequence of feature vectors based on a sequence of phonemes. These models, together with HMM, 

contribute to the speech recognition process. Figure 1 shows High-Level architecture for speech 

recognition that links HMM. 

 
Figure 1: High-Level architecture for speech recognition that links HMM 

 

 Using the language model and the acoustic model, the maximum likelihood text sequence can be found: 

 

𝑊∗ = 𝑎𝑟𝑔𝑤𝑚𝑎𝑥𝑃(𝑋|𝑊)𝑃(𝑊)         (1) 

 

where P(X|W) is the acoustic model and P(W) is the language model. 

 

The hidden Markov model consists of hidden states and observable states. In Figure 2, the bottom 

nodes represent the extracted features from the audio clip known as observable states and the top nodes 

represent hidden states (phones) of HMM. Horizontal arrows show the transition of the phone sequence. 
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Figure 2: Hidden States and Observable states of HMM 

 

With the HMM model, phone sequence is not searched one by one. Otherwise, when the number 

of phones increases complexity also grows exponentially. The Viterbi algorithm of HMM helps to find 

the optimal phone sequence in a polynomial time. This is a good feature of the HMM. 

All the above-mentioned model and algorithm works with the Hidden Markov model. Hence it is 

essential to understand the working procedure of the HMM deeply. The hidden Markov model uses the 

Markov chain and the first-order Markov chain property (Hidden markov models simply explained, n.d.). 

However, it is hidden.  

 As mentioned earlier, there are two types of states of HMM which are hidden states and observable 

states. Furthermore, there are two types of important probabilities; transition probability, and emission 

probability. By using these two types of states and probabilities the HMM model makes three important 

algorithms; namely, the forward algorithm, Viterbi algorithm, and forward-backward algorithm. 

Understanding these three algorithms is very helpful to get an idea of the application of the hidden Markov 

model in speech recognition. 

1) Forward Algorithm:   

 The likelihood of observation is calculated by the forward algorithm. The objective is to get the 

summation of probabilities for all the possible state sequences of an observation. For this calculation, 

transition probability and emission probability are used. 

𝑃(𝑋) =  ∑ 𝑃(𝑋, 𝑆)𝑠 =  ∑ 𝑃(𝑋|𝑆)𝑃(𝑆)𝑠        (2) 

where, X : observed events, ∑ 𝑃(𝑋, 𝑆)𝑠 : sum over all possible time sequences of internal states, 

P(X|S) : calculated from emission probability,  P(S) : calculated from transition probability 

Getting the summation of all possible state sequences, one at a time, has an exponential complexity 

with the number of states. This problem can be solved with HMM smartly. Since HMM solves the problem 

at time ‘t’ with the result of time ‘t-1’ or ‘t+1’. Hence, by expressing the calculations with time recursively, 

the exponential curse can be broken. 
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2) Viterbi Algorithm:   

Then it is essential to find internal states to a given sequence of observations. This can be done 

using the Viterbi algorithm in HMM. This process is also called decoding. In speech recognition using 

this algorithm, HMM finds out the most possible phoneme sequence. 

Since the current observation only depends on the current state, the joint probability of the 

observation sequence with the optimal state can be expressed as, 

𝑉𝑡(𝑗) =  𝑚𝑎𝑥𝑖=1
𝑁 𝑉𝑡−1(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑥𝑡)         (3) 

 

After the comparison of the equation of the forward algorithm and the above equation, the 

summation function of the forward algorithm is replaced by the maximum function of the Viterbi 

algorithm. That means instead of summing all possible state sequences here Viterbi algorithm takes the 

most likely path of possible state sequence.  

 

3) Forward Backward Algorithm: 

 

Forward-backward algorithm is used to learn the hidden Markov model. This algorithm is an 

iterative procedure that estimates the maximum likelihood parameters of the HMM based on the 

observed data. HMM consists of a set of hidden states and observable states, along with the transition 

probabilities between states and emission probabilities associated with the observable states. The 

goal of the Baum-Welch algorithm is to find the optimal parameters that maximize the likelihood of 

the observed data. 

The backward algorithm is the complement of the forward algorithm. The probability of 

seeing all the coming observations is calculated as a forward algorithm but in reverse order. 

𝑃(𝑌|𝜆) =  ∑ 𝜋𝑗
𝑁
𝑗=1 𝑏𝑗(𝑦1)𝛽𝑗(1)         (4) 

 

4) Acoustic Model:    

 

The acoustic model is an important component in the flow of speech recognition using the 

Hidden Markov model. This model represents the acoustic properties of speech sounds. This is 

responsible for mapping the audio input to a sequence of phonetic units. This model is typically 

trained with a large amount of labeled speech data and this model is capable of capturing statistical 

characteristics of speech sounds. Model parameters like mean vectors covariance matrices all are 

estimated based on speech features. 

The Gaussian Mixture Model (GMM) is a type of acoustic model used in speech recognition 

systems. This type of acoustic model uses Mel-frequency cepstral coefficients (MFCCs) extracted 

features as the input. GMM consists of a mixture of Gaussian distributions. 

Using an acoustic model, the likelihood of an audio feature vector X given the phone P (X 

phone) can be determined. Suppose that there is only one feature for each audio frame. Then the 
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value of this feature can be modeled by using a normal distribution. Here given different phones, 

corresponding probability density values can be calculated and then classified as the phone with the 

highest value. However, real-world scenarios are very different from this situation. Since this acoustic 

model gets inputs from the MFCC, there are 39 features of an audio frame; hence, given the state the 

value of the features cannot be modeled from the normal distribution. 

Therefore, the Gaussian Mixture Model is suitable. That means a few possible values are 

allowed since the flexibility of variants in speech is provided. 

By considering near one of the m nodes, the feature value of a specific phone can be obtained. 

Sometimes, there might be values more likely than others hence, to indicate more likely values, 

weights are introduced (Speech recognition — gmm, hmm, n.d.). 

 

5) MFCC:    

 

In the computation of MFCC, the first thing is windowing, windowing is splitting the speech 

signals into frames. High frequencies are prioritized in order to achieve similar amplitude for all formants 

because high-frequency formants process less amplitude than low-frequency formants do. After the 

widowing process, the next step is applying the Fast Fourier Transform (FFT) to determine each frame’s 

power spectrum. Subesequently, the filter bank processing is done using Mel-scale on the power spectrum. 

To get the MFCC coefficients, the power spectrum is converted to a log domain before the DCT (Discrete 

Cosine Transform) is applied to the speech signal. 

It is possible to compute formants that are in the low- frequency range and represent the resonances 

of the vocal tract using MFCC since it can effectively denote the low- frequency zone more efficiently 

than the high-frequency region. Additionally, it is an ideal representation of sound when the source 

qualities (music and voice) are constant and reliable, Additionally, it can record data from sampled signals 

up to a maximum frequency of 5 kHz, which encompasses most of the energy in human-generated sounds. 

The block diagram shown in Figure 3 summarizes and shows the steps to obtain the needed coefficient. 

 

 
Figure 3: Process of extracting features from speech by MFCC 

 

2.3. Method 

CMUSphinx toolkit, which is an open-source collection of speech recognition tools and libraries 

heavily relies on Hidden Markov model is used to make a Realtime Sinhala subtitle generator for Sinhala 

speech. 
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Figure 4: Main flow of the method 

 

1) Dataset: 

Here, the selected data set consists of nearly 3300 Sinhala voices and a transcribed file for each 

voice. Those voices are in both ’split-flac’ and ’wav’ format. This data set is created on behalf of the 

training algorithm for speech recognition hence the recordings are very clear and high quality. All the 

records are recorded by a single speaker. Specially, there are some recordings of utterances of Sanskrit 

and Pali. There could be some errors like the recording not matching with the transcribed file. Some 

statistics of the data set (Foundation, 2021) are; 

• Number of recordings – 3300 

• Total Length - 7 hours 5 minutes 

• Maximum length – 33.4 seconds 

• Minimum length – 1 seconds 

• 'wav' -format – sample rate 22050Hz and 16-bit PCM encoded 

• Silences have been removed from both the beginning and end 

 

2) Data Pre-processing & Feature Extraction: 

The previously selected data set contains ‘wav’ files with sample rates 22050 and 16-bit. However, 

for the development of the acoustic model using the CMUSphinx toolkit it is required to have all the 

recordings in ‘wav’ format with sample rate -16Khz, 16bit mono. Hence, at the pre-processing stage, must 

convert all the ‘wav’ files in the data set into the required format. Furthermore, the file name of the 

recordings is not in a specific format. This might be a problem in the future while creating other required 

files. Hence, a new Python script is written to rename all the converted recordings. 

In the selected data set, the transcribed file contains all the utterances which are recorded. 

However, there are some specific symbols (! , ., ?), and sometimes numbers are included in the sentence, 

All these symbols and numbers are removed by a separate new Python script. The output is a cleaned 

transcribed file. Features are extracted from both converted ‘wav’ files and cleaned transcribed file. 

 As previously mentioned MFCC method (2.2. 5)) is used here to extract features from ‘wav’ files. 

Those extracted features are taken as inputs for the creation of a new acoustic model. 
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 Then using a cleaned transcribed file, specific types of files must be created, which are essential 

for the creation of an acoustic model according to CMUSphinx documentation which are, 

1) ‘.dic’ file 

2) ‘.phone’ file 

3) ‘.lm.bin’ file 

4) ‘.filler’ file 

5) ‘ train.fileids’ file 

6) ‘ train.transcription’ file 

7) ‘ test.fileids’ file 

8) ‘ test.transcription’ file 

 

 Since the amount of data set is very large, manual creation of the above files is a tedious task. 

Hence, new Python scripts are written to automate this process. 

The flow chart shown in Figure 5 shows how data pre- processing and feature extraction are done 

by using Python scripts which are mentioned above (python scripts are shown by numbers in the flow 

chart; *eg:- by running python script 1 on the original transcribed file output is a cleaned transcribed file). 

 
Figure 5: Process of Data Pre-processing and Feature Extraction 

3) Training: 

At the training stage, using the previously described forward-backward algorithm (2.22 3)), a 

new acoustic model is created. 

4) Testing: 

Using the newly created acoustic model and generated language model, the testing stage is done 

previously described Viterbi algorithm (2.2. 2)) according to the ‘test.transcription’ and ‘test.fileids’ files. 

After this process “.align” file is created which contains the overall results of the testing. 
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Thereafter, using the acoustic model, a realtime subtitle generator is created using OpenCV and 

PocketSphinx library in Python. This created application recognizes Sinhala voices and converts them 

into Sinhala text and feeds those texts into a video while all the recognized texts are saved in a separate 

file. 

 

5) Evaluation: 

The evaluation part is done using the accuracy of speech recognition. The accuracy of speech 

recognition systems is typically measured using metrics such as Word Error Rate (WER). WER measures 

the percentage of words that are incorrectly recognized compared to the  ‘test.transcription’. 

 

3. Results 

 

In this study, accuracy has been used as a performance matrix. Since this is a subtitle-generating 

model, basically the accuracy is defined by evaluating its performance against a set of reference subtitles. 

In other words, measuring its ability to generate correct and meaningful subtitles for a given input. 

The Word Error Rate (WER) is a matrix used in speech recognition and transcription tasks to evaluate 

accuracy. WER measures the difference between the generated subtitles and the reference subtitles at the 

word level. WER calculates the minimum number of word insertions, deletions, and substitutions needed 

to transform the generated subtitles into reference subtitles (Papineni, Roukos, Ward, & Zhu, 2002), 

(Mpora, Ganchev, Kotinas, & Fakotakis, 2007). Lower WER values indicate higher accuracy (Srun, Ny, 

Cheat, Ching, & Ny, 2021). 

𝑊𝐸𝑅 =  
𝐼+𝐷+𝑆

𝑁
           (5) 

 

Accuracy = 100 − WER          (6) 

  

where, I: Number of incorrectly inserted words, D: Number of undetected words, S : Number of 

substituted words between reference & recognized script, N: Number of counted words in transcription 

 

 

4.1  Training Result 

Without doing any configuration for the default configuration file, the following results can be 

recorded (Table 1). The ‘_train’ transcription’ file consists of 3300 sentences, and from them, 20% (main 

dataset) of sentences are selected for the ‘_test.transcription’ file. Since, the tested file contains 

approximately 660 sentences, in other words, it has 7882 words approximately. Table 1 shows the obtained 

training accuracy from the main dataset without doing any modification for the default configuration file. 

According to that, accuracy is 67.05% and WER is 32.95% for 7882 words. 

 

 

Table 1: Results with Default Configuration for Main Dataset 

WER Accuracy Number of Words 

32.95% 67.05% 7882 
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4.2  Tunning Hyperparameter 

The principal goal of machine learning, including subtitle-generating models is to create a model 

that performs well and gives accurate predictions in a particular set of cases. In order to achieve that, 

machine learning optimization is needed. Machine learning optimization is the process of adjusting 

hyperparameters in order to minimize the cost function. In other words, the training process typically 

involves optimizing model parameters and hyperparameters using training data. The model is trained to 

maximize the likelihood of generating the correct subtitles given the input data. Hyperparameters are 

configuration settings that are not learned from data but are set before starting to train the model. When it 

comes to hyperparameter optimization for a subtitle generation model, several hyperparameters were 

tuned manually to improve the performance of the model. 

  Changed variables and description: 

• Liftering coefficient - It is used to apply liftering to MFCCs during feature 

extraction which involves applying a windowing function to the MFCC. The value 

of this parameter determines the degree of emphasis or attenuation on the spectral 

components, with higher values improving the discrimination of specific phonetic 

features potentially leading to better recognition accuracy. 

• Phonetic decision tree clustering - Enabling this feature multiple Gaussian context-

independent models can be created. This technique is used in speech recognition to 
enhance the accuracy and performance of the system. This trains separate models 

for each phoneme. By training a dedicated Gaussian model for each phoneme the 

system captures acoustic characteristics more accurately. 

• State tying - This determines the number of tied states used in the acoustic modeling 

process. These states allow for efficient modeling by sharing statistical information 

among similar acoustic units such as phonemes. This defines the granularity of the 

acoustic model Higher values lead to more distinct tied states. Experimentation is 

necessary to determine the suitable value because it significantly impacts system 

accuracy. 

• Number of Gaussians - It determines the number of Gaussian components used to 

model the acoustic properties of each tied state or acoustic unit which can be 

changed for the continuous models for large vocabulary. It can be any power of 2, 

allowing flexibility in choosing the appropriate number of Gaussians for the 

specific task or dataset. 

 

Since hyperparameter optimization can be time-consuming and computationally expensive, it is 

advisable to use techniques like early stopping and parallelization to make the process more efficient. Out 

of those techniques, here early stopping technique was used. 

The idea behind early stopping is to monitor the model’s performance on a separate validation 

dataset during training and stop the training process when the performance on the validation set starts to 

deteriorate. Here, 10% of the training dataset was taken as the validation set, and have been tuned the 

hyperparameters manually and tried to increase the accuracy of the model. Table 2 shows the obtained 

results before beginning the hyperparameter tuning for the validation set. 78.81% of accuracy can be 

obtained with 21.19% WER. 
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Table 2: Results with Default Configuration for Validation Set 

WER Accuracy 

21.19% 78.81% 

 

The outcomes of changing the Liftering coefficient’s value are shown in Table 3. Interestingly, 

regardless of the adjustments made to the coefficient, the accuracy values consistently revolve around 

78.69%, which corresponds to the accuracy achieved using the default configurations. According to these 

results, altering the liftering coefficient does not result in appreciable increases in accuracy. In other words, 

it seems that the liftering coefficient does not significantly affect the system’s overall accuracy. 

 

Table 3: Obtained Results from Validation Set by Only Changing the Lifting Coefficient 

Value WER Accuracy 

12 21.19% 78.81% 

22(Default) 21.31% 78.69% 

30 21.31% 78.69% 

35 20.94% 79.06% 

45 21.19% 78.81% 

60 21.19% 78.81% 

70 21.19% 78.81% 

90 21.19% 78.81% 

100 21.31% 78.69% 

110 21.31% 78.69% 

130 20.82% 79.18% 

 

 

Table 4: Obtained Results from Validation Set by Changing the Number of Gaussians 

Value WER Accuracy 

8(Default) 21.19% 78.81% 

16 21.19% 78.81% 

32 21.19% 78.81% 

64 21.19% 78.81% 

128 21.19% 78.81% 

 

 

The results of changing the number of Gaussians employed in the system are shown in Table 4. 

The accuracy was 78.81% with the default value of 8 which remained constant regardless of the number 

of Gaussians examined. This finding implies that the overall accuracy is not much affected by the number 

of Gaussians used in an iteration. 
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Table 5: Obtained Results from Validation Set by Changing the Number of Tying States 

Value WER Accuracy 

100 21.31% 78.69% 

200(Default) 21.19% 78.81% 

250 21.31% 78.69% 

300 21.31% 78.69% 

350 21.31% 78.69% 

400 21.31% 78.69% 

4200 21.31% 78.69% 

 

 

Table 5 shows the outcomes of modifying the number of tie states, another hyperparameter 

intended to increase the system’s accuracy. The best accuracy was obtained at 78.81% with the default 

value of 200. Intriguingly, the accuracy remained marginally lower at 78.69% for all other entries where 

the number of tie states was changed. 

The results achieved by allowing the phonetic decision tree clustering parameter, which enables 

the training of multiple Gaussian models, are shown in Table 6. This method resulted in a validation set 

accuracy of 93.56%, which is outstanding. When compared to the default accuracy number of 78.81%, 

this appreciable increase in accuracy is noticeable. It is clear from the findings shown in the previous 

tables that turning on the phonetic decision tree clustering parameter has a noticeable impact on accuracy. 

The accuracy, however, does not seem to be significantly impacted by the other variables. According to 

the findings, changing parameters like the liftering coefficient, the number of Gaussians, or the number of 

tying states does not significantly affect the accuracy. Since the phonetic decision tree clustering parameter 

is enabled for the main data set the result in Table 7 were obtained. 

 

Table 6: Obtained Results from Validation Set by Enabling Phonetic Decision Tree Clustering 

Parameter 

 WER Accuracy 

Multiple Gaussians context 6.44% 93.56% 

Single Gaussian context 21.19% 78.81% 

 

 

Table 7: Obtained Results from Main Dataset by Enabling Phonetic Decision Tree Clustering Parameter 

WER Accuracy Number of Words Number of Sentences 

11.72% 88.28% 7882 660 

 

The results of using the phonetic decision tree clustering parameter for the primary data set are 

shown in Table 7. It indicates that an outstanding accuracy of 88.28% can be obtained by training several 

Gaussian context-independent models. A single Gaussian context-independent model, however, produces 

a much lower accuracy of 67.05%. 

 Furthermore, to assess whether training accuracy is influenced by the specific choice of the test 

data set, various ‘test.transcription’ files were generated. It is important to note that all of these alternative 

files contain an equal number of words compared to the original ‘test.transcription’ file. By maintaining 

an equal word count, the impact of the test data set itself can be isolated and analyzed independently from 
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other factors. This approach allows for a fair and unbiased evaluation of the training accuracy across 

different test data sets (Table 8). 

 

Table 8: Results for Main Dataset by Changing the 'test.transcription' File 

Flod WER Accuracy Number of Sentences 

Flod 1 32.95% 67.05% 660 

Flod 2 26.96% 73.04% 588 

Flod 3 36.91% 63.09% 433 

Flod 4 33.33% 66.67% 445 

Flod 5 28.28% 71.72% 622 

 

According Table 8, variations in training accuracy were seen despite keeping the number of words 

in the chosen dataset constant. This suggests that occasionally certain terms in the selected data set are 

misclassified or in- correctly identified by the trained model. Despite the constant word count, the 

accuracy varies, indicating that the model can have trouble correctly identifying and understanding 

particular terms. 

The methods discussed aim to improve the training accuracy of the acoustic model. Consequently, 

the acoustic model with the highest training accuracy (88.28%) was chosen for developing a real-time 

subtitle generator. 

 

4.3  Testing Result 

Using the acoustic model with the highest training accuracy for the real-time subtitle generator, 

the following test results have been obtained. 

 

Table 9: Results of Realtime Application using the above acoustic model 

 

 
 

The test results obtained from the real-time subtitle generator application in a real-world setting 

are represented in Table 9. For testing purposes, three Sinhala sentences were spoken to the system. The 

second column displays the recognized Sinhala sentence based on the input provided. The variables I, D, 

S, and N, stand for Insertions, Deletions, Substitutions, and Total number of words respectively, and are 

represented in their respective columns. 
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The accuracy percentages obtained for the spoken sentences were 50%, 100%, and 70%. Taking 

the average of these accuracy values, the overall accuracy achieved is 73.33%. These results reflect the 

performance of the real-time subtitle generator in accurately transcribing the spoken Sinhala sentences. 

While there is variability in the accuracy for different sentences, the average accuracy indicates the 

system’s ability to capture the content of the spoken words and provide corresponding subtitles. 

 

4. Discussion 

The initial accuracy of the acoustic model, without any modifications to the default configuration, 

was 67.05%. To optimize the training accuracy, parameter tuning was performed using a validation set, 

which identified influential parameters. Using the values of these parameters, a new acoustic model was 

trained, resulting in a higher training accuracy of 88.28%. 

An experiment was conducted to investigate the impact of the selected data set for testing on 

training accuracy. The results showed that the average accuracy varied around the default accuracy value. 

The experiment revealed challenges in correctly identifying and comprehending specific terms within the 

training data set, leading to varying training accuracies when tested with different ‘test.transcription’ files. 

These findings emphasize the importance of meticulous parameter tuning and data selection for 

achieving optimal training accuracy in acoustic models. The experiments highlighted the influence of 

specific parameters and the model’s ability to interpret and recognize various terms in the training data. 

  The developed application, using the acoustic model with a training accuracy of 88.28%, was 

tested in a real-world environment, achieving an overall accuracy of 73.33%. Considering the challenges 

posed by real-world conditions such as background noise, this accuracy percentage is considered fair and 

acceptable. Despite the difficulties in mitigating these effects, the system demonstrates a reasonable level 

of accuracy in transcribing and interpreting speech. 

The current limitation of the subtitle generator lies in its exclusive reliance on the provided dataset 

for subtitle generation. A crucial enhancement would involve expanding the dataset to encompass 

recordings from multiple speakers, thereby significantly augmenting the generator's adaptability to diverse 

speech patterns. Furthermore, the application boasts cross-platform independence, ensuring its 

compatibility across various operating systems. To further refine its capabilities, a key improvement 

would be the seamless and continuous creation of subtitles in real-time. These advancements collectively 

position the real-time subtitle generator as a versatile and inclusive tool, extending its utility to a broader 

user base and diverse scenarios. 

During the development of the Real-time Subtitle Generator for Sinhala speech, several limitations 

were encountered. Building the language model proved challenging as it required a Unix system, whereas 

installing a relevant toolkit for Windows had limited documentation. To overcome this, language model 

files were created using a Unix system, while the rest of the development was done in a Windows 

environment. 

Outdated pages in the CMUSphinx documentation presented another obstacle, leading to the 

utilization of an older version of the toolkit. Newer versions proved challenging due to insufficient 

instructions and guidance. 

Additionally, there was a scarcity of data sets for Sinhala speech and transcription. One identified 

data set had significant background noise, so an alternative data set with reduced noise levels was found 

and Python scripts were modified accordingly. This new data set featured recordings from a single 

speaker. 
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These limitations highlight the complexities faced during the development process. However, 

appropriate solutions were devised to address issues related to toolkit compatibility, documentation, and 

the availability of suitable data sets. 

 

5. Conclusion 

  This research aimed to develop a real-time subtitle generator for Sinhala speech using speech 

recognition techniques. By employing methods like MFCC for feature extraction and Hidden Markov 

Models for statistical modeling, a new acoustic model with a training accuracy of 88.28% was created. 

This model formed the foundation for real-time subtitle generation of Sinhala speeches. 

The application demonstrated satisfactory accuracy in real-world scenarios, showcasing its 

practical viability. The significance of this study lies in its novelty, as there were no existing offline real-

time subtitle generators for Sinhala speech before this work. This development opens up possibilities for 

further advancements in Sinhala speech processing and the digital era. While the real-time subtitle 

generator accurately generates Sinhala subtitles once it identifies speech sentences, it does have 

disadvantages such as, inability to generate new subtitles beyond those provided in the dataset, being 

limited to recognizing and transcribing voices present in the training dataset and being limited to a single 

speaker. These disadvantages highlight the need for future improvements and adaptations to expand the 

generator’s applicability to a wider range of voices and subtitles. 

Several suggestions for further research can enhance the capabilities of the real-time subtitle generator.  

• The generator is currently limited to generating subtitles from the provided dataset, expanding 

the dataset and including recordings from multiple speakers would be a valuable direction for 

future research. 

• The previous experiments have indicated that the model may face challenges in accurately 

recognizing and interpreting specific words. Investigating these variations and exploring 

methods to improve the model’s accuracy in such cases would present an interesting avenue 

for further research.  

• The sensitivity of the toolkit to background noises poses a significant limitation. Exploring 

techniques to reduce the sensitivity to noise and enhance the model’s robustness in real-world 

environments would be a promising area of research. 

  By addressing these areas, future research endeavors can contribute to the advancement of the real-

time subtitle generator, enabling it to generate subtitles for a wider range of content, improve word 

recognition accuracy, and enhance noise robustness for more reliable performance in various 

environments. 
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