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Abstract 

 

 The two-wheeled self-balancing robot (TWSBR), utilizing an inverted pendulum arrangement, 

exhibits dynamic stability while being statically unstable. Due to this behavior, the TWSBR system 

has been used to demonstrate fundamental principles of stability, nonlinear dynamics, and control 

theory. In this work, a computational study of the TWSBR was carried out to develop a mathematical 

model using Newtonian mechanics that serves as an educational tool in control education for 

demonstrating the impact of different control algorithms such as Proportional (P), Proportional-

Derivative (PD), and Proportional-Integral-Derivative (PID) on system stability.   The comparison of 

P, PD, and PID controllers was undertaken to demonstrate the practical advantages of each controller 

in improving the robot's stability and responsiveness. The PID controller was designed and optimized 

using the Root-locus techniques, with a damping ratio equal to 1 which exhibits a fast-settling time 

with minimum overshoots. When an impulse response was applied to the PID controller in the 

simulation environment it demonstrated system can reach a dynamic balance within 1.2 seconds 

demonstrating the effectiveness of the proposed PID controller. The optimal gain parameters K value 

and Kp, Ki, and Kd parameter values were determined using root-locus analysis, which allowed the 
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system to operate with great stability and minimum settling time. These findings highlight the 

TWSBR's educational significance as a hands-on tool for teaching practical applications of control 

theory, as well as providing valuable insights into the design and optimization of control systems for 

dynamic balance tasks. This study emphasizes the relevance of control algorithms in achieving rapid 

and stable dynamic behaviors, making it a valuable learning resource for both students and instructors. 

 

Keywords: Two-wheeled self-balancing robot, Inverted pendulum, P, PD and PID controllers, Stability 

analysis, Control Education 

 

 

1. Introduction 

Two-wheeled self-balancing robots (TWSBR) (Chan et al., 2013; Ebrahimi et al., 2015) have 

become a hot topic among robotics researchers. Due to its applications in personal transportation such 

as Segway (Nguyen et al. 2004), it has also become well-known among the public. Segway and similar 

systems are now being widely used in tourism, in outdoor patrolling in public spaces such as parks, 

and in security and surveillance.  

A two-wheel self-balancing robot (TWSBR) is a robot that has only two wheels one on the 

right and the other on the left. As a result, the robot support polygon becomes a straight line. So 

TWSBR is not statically stable and is considered a naturally unstable system. However, some feedback 

control loops can maintain stability without human involvement. These robots use sensors and control 

systems to adjust their position to remain upright constantly (Mudeng et al., 2020). 

The dynamics of the TWSBR system can be treated as a problem of the inverted pendulum 

which is a very popular example used in control theory education. Thus, a computational study of the 

TWSBR platform is the best platform for studying feedback control loops in control education 

(Wardoyo et al., 2015; Mai et al., 2018). TWSBR with its nonlinear dynamics and challenges in control 

algorithms due to uncertainties and external disturbances, offers a rich learning environment for 

students to understand complex control systems (Ghahremani & Khalaji, 2023; Senthilkumar et al., 

2023). Thereafter, by implementing different control algorithms to the TWSBR platform, students can 

explore real-world applications of control theory, such as stability maintenance and trajectory tracking 

control, by enhancing their understanding of control strategies in dynamic systems. The study of the 

TWSBR platform thus offers a hands-on approach to teaching control theory concepts, making it a 

valuable platform in control education. 

Due to the TWSBR system being statically unstable, to maintain its stability dynamic balancing 

techniques must be implemented using different control algorithms. Mohapatra et al studied a TWSBR 

with a Proportional Integral Derivative (PID) controller to maintain its stability in MATLAB Simscape 

Multibody environment (Mohapatra et al., 2019). Zimit et al discussed the design and implementation 

of a Proportional Integral Derivative (PID) controller on a TWSBR for stabilization and trajectory 

tracking control (Zimit et al., 2018). The work by Mudeng and co-workers (Mudeng et al., 2020) 

discussed the design and simulation of a TWSBR with a PID controller to maintain its stability by 

adjusting the angular velocity of DC motors through PWM. 

The design and implementation of a TWSBR using a Linear Quadratic Regulator (LQR) for 

state feedback with a focus on stabilizing the robot and rejecting disturbances has been described 

(Bonafilia et al., 2015). In the said work, it was stated that TWSBR was able to return to the upright 

position after a sudden disturbance like a gentle push. The mathematical model of the TWSBR system 

was first analyzed using Newtonian mechanics by Asali and co-workers (Asali et al., 2017). Then, the 

authors successfully applied an LQR controller for the proposed system, and the controller was tested 

with different conditions through simulation on a MATLAB/Simulink environment. Some researchers 

used the Lagrangian approach to derive the mathematical model of the TWSBR system and implement 

the LQR controller to maintain stability (Ding et al., 2012). A novel design of TWSBR structure which 

can establish better structural balance using LQR controller was introduced (Mathew et al., 2021). 
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Others have presented that the (LQR) control method outperforms the (PID) controller method in 

controlling the TWSBR system (Wei et al., 2013; Kumar P et al., 2023). The successful implementation 

of a Pole-Placement controller on the TWSBR system to maintain stability was presented in 2011  

(Feng et al., 2011). 

In some research work, nonlinear controllers such as Fuzzy Logic Controllers and Fuzzy PID 

controllers have been used to maintain the stability of TWSBR, and the fuzzy logic control and Fuzzy 

PID controllers have been used to successfully keep the robot from falling, achieving the anticipated 

control goals and better dynamic performance (Wu & Zhang 2011; Wardoyo et al. 2015). Haddout and 

co-workers discuss how nonholonomic mechanics is used to model and simulate of TWSBR system 

(Haddout, 2018). Atac et al present how reinforcement (RF) learning can be used to balance the 

TWSBR system and utilize PID control to enhance the training process (Ataç et al., 2021). Kharola et 

al discussed how the Adaptive neuro-fuzzy inference system controller was designed to control the 

TWSBR using real-time data with Arduino UNO microcontroller (Kharola et al., 2022).  

The paper by Borja and co-workers presents the design of an affordable TWSBR for 

educational purposes in control systems (Borja et al., 2020). The robot utilizes stepper motors and 

employs two control algorithms: the first algorithm uses two PID controllers to regulate the inclination 

angle and angular speed of the wheels, while the second algorithm applies the LQR technique. The 

modeling, instrumentation, and control of a TWSBR using control algorithms like PID and LQR 

controllers have been described (Jiménez et al., 2020) to enhance control engineering education and 

address challenges in balancing and stabilization of the TWSBR system using this platform.Mogollon 

and co-workers identified the parameters to calibrate the simulated model by comparing the platforms' 

and the model's behavior which was part of their research effort implementing the TWSBR platform 

(Mogollon et al., 2022). In order to better understand feedback control loops, the calibrated model is 

designed to be utilized in control courses. 

However, a lot of computational studies have been made with these control algorithms a 

computational study of the TWSBR was carried out to develop a mathematical model that serves as 

an educational tool to compare these control performances of the algorithm in terms of response time 

and dynamic stability in a TWSBR system is lacking. As a result, in this work, the first-step 

mathematical model of the TWSBR system was derived using Newtonian mechanics by considering 

the dimension of a practical robot platform. Then the stability of the TWSBR system was investigated 

using the developed mathematical model. Next P, PD, and PID controllers were implemented using 

root-locus analysis to demonstrate how each control algorithm impacts system stability that can be 

used in control education.  

   

2. Methodology 

2.1 Mathematical Modeling of TWSBR System 

 The first dynamic model for the TWSBR system was established to implement different control 

algorithms and study the stability of the system. When studying a mathematical model for the TWSBR, 

despite its more complex system dynamics, can be approached as a problem of the inverted pendulum. 

TWSBR can mainly be divided into two sections, body, and wheels. This approach ultimately results 

in the development of two equations of motion that comprehensively depict the behavior of the 

balancing robot. 

 The equations of motion related to both wheels are derived separately by considering the forces 

and moments acting wheels shown in Figure 1. Due to the close relationship between the equations for 

both wheels, only the equation for the right wheel is given. 
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Table 1. The variables used in the TWSBR system 

Variable Description 

𝑥 Linear displacement of the robot along the horizontal direction 

�̇� Linear velocity of the robot along the horizontal direction 

𝜃𝑝 Rotation angle of the chassis 

𝜃𝑤 Rotation angle of the wheels 

𝜙 Inclination angle of the TWSBR 

�̇� Rate of change of the inclination angle of TWSBR 

l Distance between the centers of the wheel and the robot’s center of 

gravity 

g Gravity 

CL, CR Torque exerted by the motors on the wheels 

HL, HR, PL, PR  Forces of reaction between the wheel and the chassis  

HfL, HfR Friction forces between the ground and the wheels  

Mp Mass of the robot’s chassis  

Mw  Mass of the robot wheel 

𝑘𝑚   Motor torque constant 

𝑘𝑒 Motor Back EMF constant  

𝑅 Motor nominal terminal resistance  

𝑟  Wheel radius 

Iw Moment of inertia of the wheel 

Ip  Moment of inertia of the robot chassis 

𝑉𝑎 Motor input voltage 

 

 
 

Figure 1: Diagram of forces and moments acting on the TWSBR 
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Applying Newton's rule of linear motion and Newton's law of angular motion to the right wheel 

force equations are as follows: 

𝑀𝑤�̈� =  𝐻𝑓𝑅 − 𝐻𝑅                                                                              (1) 

    𝐼𝑤�̈�𝑤 = 𝐶𝑅 − 𝐻𝑓𝑅 𝑟                                                                         (2) 

 

The torque applied by the DC motor to the wheels can be determined by motor dynamics. 

𝐶 =  𝐼𝑅
𝑑𝜔

𝑑𝑡
+ 𝜏𝑎 = 

−𝑘𝑚𝑘𝑒

𝑅
�̇�𝑤 + 

𝑘𝑚

𝑅
 𝑉𝑎                 (3) 

 

Finally, the equation of motion associated with both wheels is derived as follows,   

2 (𝑀𝑤 +
𝐼𝑤

𝑟2 ) �̈� =
−2𝑘𝑚𝑘𝑒

𝑅𝑟2 �̇� + 
2𝑘𝑚

𝑅𝑟
 𝑉𝑎 − (𝐻𝑅 + 𝐻𝐿)                       (4) 

 

Newton's second law of motion is used to determine the net force acting on the robot frame in the 

horizontal direction. 

∑𝐹𝑥 =  𝑀𝑝�̈� 

(𝐻𝑅 + 𝐻𝐿) =  𝑀𝑝�̈� +  𝑀𝑝𝑙�̈�𝑝 cos 𝜃𝑝 − 𝑀𝑝𝑙 �̇�𝑝
2 sin 𝜃𝑝                   (5) 

 

The total of forces acting perpendicular to the pendulum, 

 

∑𝐹𝑥𝑝 = 𝑀𝑝�̈�  cos 𝜃𝑝 

(𝐻𝑅 + 𝐻𝐿) cos 𝜃𝑝 + (𝑃𝐿 + 𝑃𝑅) sin 𝜃𝑝 − 𝑀𝑝g sin 𝜃𝑝 − 𝑀𝑝𝑙�̈�𝑝  =  𝑀𝑝�̈� cos 𝜃𝑝              (6) 

 

Total moments around the pendulum's center of mass, 

∑𝑀𝑜 =  𝐼 𝛼 

− (𝐻𝑅 + 𝐻𝐿)𝑙 cos 𝜃𝑝 − (𝑃𝐿 + 𝑃𝑅)𝑙 sin 𝜃𝑝 − (𝐶𝐿 + 𝐶𝑅)  =  𝐼𝑝�̈�𝑝                 (7) 

 

Then using the above equations non-linear equations of motion of the system can be obtained by 

(𝐼𝑝 + 𝑀𝑝𝑙2 )�̈�𝑝  −  
2𝑘𝑚𝑘𝑒

𝑅𝑟
�̇� + 

2𝑘𝑚

𝑅
 𝑉𝑎 + 𝑀𝑝g 𝑙 sin 𝜃𝑝  = −𝑀𝑝𝑙�̈� cos 𝜃𝑝                (8) 

2𝑘𝑚

𝑅𝑟
 𝑉𝑎 = (2𝑀𝑤 +

2𝐼𝑤

𝑟2 + 𝑀𝑝) �̈� +
2𝑘𝑚𝑘𝑒

𝑅𝑟2 �̇� + 𝑀𝑝𝑙�̈�𝑝 cos 𝜃𝑝 −  𝑀𝑝𝑙 �̇�𝑝
2 sin 𝜃𝑝               (9) 

 

equations (8) and (9) are linearized by assuming that 𝜃𝑝 = 𝜋 + 𝜙, where 𝜙 represents a tiny angle 

from the vertical upward direction.  

 

Hence, 

cos 𝜃𝑝 = −1,  sin 𝜃𝑝 =  −𝜙   and  (
𝑑𝜃𝑝

𝑑𝑡
)
2

= 0. 

 

The linearized equation of motion is, 

(𝐼𝑝 + 𝑀𝑝𝑙2 )�̈�  − 
2𝑘𝑚𝑘𝑒

𝑅𝑟
�̇� + 

2𝑘𝑚

𝑅
 𝑉𝑎 − 𝑀𝑝g 𝑙𝜙 = 𝑀𝑝𝑙�̈�                (10) 

2𝑘𝑚

𝑅𝑟
 𝑉𝑎 = (2𝑀𝑤 +

2𝐼𝑤

𝑟2 + 𝑀𝑝) �̈� +
2𝑘𝑚𝑘𝑒

𝑅𝑟2 �̇�  −  𝑀𝑝𝑙�̈�                 (11) 

 

The state space representation of the system is obtained by rearranging the equations (10) and (11).  

�̈�   =
𝑀𝑝𝑙

(𝐼𝑝+𝑀𝑝𝑙2 )
�̈� +   

2𝑘𝑚𝑘𝑒

𝑅𝑟(𝐼𝑝+𝑀𝑝𝑙2 )
�̇� − 

2𝑘𝑚

𝑅(𝐼𝑝+𝑀𝑝𝑙2 )
 𝑉𝑎 +

𝑀𝑝g 𝑙

(𝐼𝑝+𝑀𝑝𝑙2 )
 𝜙                     (12) 
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�̈� =
2𝑘𝑚

𝑅𝑟(2𝑀𝑤+
2𝐼𝑤
𝑟2 +𝑀𝑝)

 𝑉𝑎 −
2𝑘𝑚𝑘𝑒

𝑅𝑟2(2𝑀𝑤+
2𝐼𝑤
𝑟2 +𝑀𝑝)

�̇� +  
𝑀𝑝𝑙

(2𝑀𝑤+
2𝐼𝑤
𝑟2 +𝑀𝑝)

�̈�                       (13) 

The state space equation for the system is obtained using equations (10) (11) (12) and (13), as follows. 

[

�̇�
�̈�
�̇�

�̈�

] =

[
 
 
 
 
0 1 0 0

0
2𝑘𝑚𝑘𝑒(𝑀𝑝𝑙𝑟−𝐼𝑝−𝑀𝑝𝑙2)

𝑅𝑟2𝛼

𝑀𝑝
2g𝑙2

𝛼
0

0 0 0 1

0
2𝑘𝑚𝑘𝑒(𝑟𝛽−𝑀𝑝𝑙)

𝑅𝑟2𝛼

𝑀𝑝g 𝑙𝛽

𝛼
0]
 
 
 
 

[

𝑥
�̇�
𝜙

�̇�

] +

[
 
 
 
 

0
2𝑘𝑚(𝐼𝑝−𝑀𝑝𝑙2− 𝑀𝑝𝑙𝑟)

𝑅𝑟𝛼

0
2𝑘𝑚(𝑀𝑝𝑙−𝑟𝛽)

𝑅𝑟𝛼 ]
 
 
 
 

𝑉𝑎             (12)  

Two model parameters are then defined as: 

𝛽 = (2𝑀𝑤 +
2𝐼𝑤

𝑟2 + 𝑀𝑝)                      𝛼 = [𝐼𝑝𝛽 + 2𝑀𝑝𝑙
2 (𝑀𝑤 +

𝐼𝑤

𝑟2)] 

Some variables used in the TWSBR system that are listed in Table 1 were determined experimentally 

for our system and the values obtained are listed below: 

  𝛼 = 0.0083, 𝛽 = 0.8580, 

𝑀𝑝 =  0.702 kg, 𝐼𝑝 = 0.0085  kg.m2, 

𝑙 = 0.0927 m, 𝑀𝑤 = 0.052 kg, 

 𝑘𝑚 = 0.2825 N.m/A, 𝑘𝑒 = 0.67859 V.s/rad, 

𝑅 = 7.049 Ω, r = 0.034 m. 

Then applying experimentally measured values to the dynamic model of TWSBR the open loop 

transfer function 𝐺(𝑠) for the TWSBR system can be derived as:  
𝜙(𝑠)

𝑉𝑎
= 𝐺(𝑠) =

7.697𝑠

𝑠3+28.12𝑠2−139.7𝑠−2479
                                         (13) 

 

2.2 Proportional (P) controller design 

 To address the TWSBR instability of the system, this section tries to implement a P controller, 

which is one of the simplest types of controllers used in feedback control systems, to the TWSBR 

system and analyze the performance. The implementation of a proportional controller will result in a 

decrease in the rise time, a reduction, although not complete elimination, of the steady-state error, and 

an increase in overshoots. Implementation of the P controller was done by inserting the P controller 

transfer function into the TWSBR system open-loop transfer function as follows. 

𝐺(𝑠)𝐺𝑐(𝑠) =
𝐾𝑝7.697𝑠

𝑠3+28.12𝑠2−139.7𝑠−2479
            (14)  

The closed-loop transfer function for the TWSBR system with a P controller is determined as follows. 
𝐶(𝑠)

𝑅(𝑠)
=

𝐾𝑝7.697𝑠

𝑠3+28.12𝑠2−139.7𝑠+𝐾𝑝7.697𝑠−2479
    (15) 

 The TWSBR system exhibits instability as a result of a pole situated in the right half-plane of 

the complex s-plane. To ensure the stability of the TWSBR system, the pole situated in the right half-

plane of the complex s-plane must be relocated to the left half-plane through the selection of an 

appropriate 𝐾𝑝 value. The control gain 𝐾𝑝 is determined through root-locus analysis. 

 

2.2 Proportional Derivative (PD) controller design 

 When the P controller was implemented, the system was able to maintain stability with 

overshoots and oscillations which was far from the expected response. Accordingly, the PD controller 

was implemented to decrease the overshoots that occurred in the P controller. PD controller transfer 

function can be shown as follows. 

𝐺𝑐(𝑠) = 𝐾𝑝 + 𝐾𝑑 𝑠 = 𝐾(𝑠 + 𝑧𝑐)          (16) 

where 𝐾𝑑 = 𝐾, 𝑧 =  𝐾𝑝/𝐾𝑑 . Hence, In PD design first compensator zero 𝑧𝑐 value and gain 𝐾 must be 

calculated. Compensator zero 𝑧𝑐 value and gain 𝐾 for the PD controller was calculated to meet the 

transient response specifications. Here, the first dominant pole location for the PD controller was 

selected to reduce the peak time to one-third of that of the P control system as 𝑠𝑑 = −414 ± 545𝑗. 
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Then Compensator zero 𝑧𝑐 = 585.6 was calculated and gain 𝐾 = 104  was selected from the root 

locus analysis of the PD control system. The closed-loop transfer function for the TWSBR system with 

a PD controller is determined as follows. 
𝐶(𝑠)

𝑅(𝑠)
=

800.5𝑠2+468728𝑠

𝑠3+828.6 𝑠2+468600𝑠−2479
                 (17)     

 

2.3 Proportional Integral Derivative (PID) controller design 

Proportional Integral Derivative (PID) Controller design used to improve the system response to the 

TWSBR. The transfer function of a PID controller can be expressed as: 

𝐺𝑐(𝑠) = 𝐾𝑝 + 𝐾𝑑𝑠 +
𝐾𝑖

𝑠
= 𝐾

(𝑠+𝑧1)(𝑠+𝑧2)

𝑠
                     (18) 

      

Where 𝐾 =  𝐾𝑑 , 𝑧 1 + 𝑧 2 =  𝐾𝑝/𝐾𝑑  and  𝑧1𝑧2  =  𝐾𝑖/𝐾𝑑 .Hence, PID controller design can be 

performed by adding two zeros and one pole at the origin to the loop gain  𝐺𝑐(𝑠)𝐺(𝑠) as follows; 

𝐺(𝑠)𝐺𝑐(𝑠) =
𝐾(𝑠+𝑧1)(𝑠+𝑧2)7.697𝑠

𝑠(𝑠3+28.12𝑠2−139.7𝑠−2479)
              (19)          

In this design, two zeros are chosen as  𝑧1,2 = 4.7 ± 𝑗0.15  and a closed-loop transfer function for the 

PID controller was designed as follows. Here control gain 𝐾 is calculated via root-locus analysis.  
𝐶(𝑠)

𝑅(𝑠)
=

𝐾(7.697 𝑠3+72.36𝑠2+170.2𝑠)

𝑠4+(28.12+7.697𝐾)𝑠3+(72.3𝐾−139.7) 𝑠2+(170.2𝐾−2479)𝑠
       (20)  

    

3. Result and Discussion 

The stability of the TWSBR system can be analyzed by considering the pole and zero of the 

open loop transfer function 𝐺(𝑠) shown in equation (13). From the pole-zero map shown in Figure 2 

(a), it can be concluded that the TWSBR system is unstable since it has a pole in the right half plane. 

             Figure 2 (b) presents the impulse response for the open loop transfer function 𝐺(𝑠)  of the 

TWSBR, and it is seen that when an impulse is applied to the TWSBR its inclination angle starts to 

increase exponentially. From this, it was once again verified that the TWSBR system is unstable.  

 

 
(a)                                                                              (b) 

 

Figure 2: (a) Pole-Zero Map, (b) Impulse response, for open loop transfer function.  

 

From the root-locus plot shown in Figure 3, it can be seen that the pole located at the right half-plane 

in the complex s-plane can only be shifted to the imaginary axis and at that moment the pole will be 

located at zero. The root-locus analysis found that when the pole shifts to zero, the gain value becomes 
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infinite, which is not practical. Therefore, applying 𝐾𝑝values, which shift the pole at the right half-

plane close to zero, to the transfer function stability was analyzed by performing impulse response 

analysis.    

 
Figure 3: Root-locus of the loop transfer function 𝐺(𝑠)𝐺𝑐(𝑠) for TWSBR with P controller 

 

When 𝐾𝑝values increase up to 𝐾𝑝 = 600  the system shows impulse response as shown in Figure 4 

(a), which shows an unstable system. When 𝐾𝑝 value increases beyond  𝐾𝑝 = 640  as shown in Figure 

4 (b) impulse response TWSBR system manages to maintain stability at a vertical position at 𝐾𝑝 =

650 with few overshoots and oscillations. As shown in Figure 4 (b) impulse responses when 𝐾𝑝 

increased beyond the value of 650 oscillations and overshoots become larger. Therefore, when the P 

controller is implemented 𝐾𝑝 is selected as 650. 

 

 
(a)                                                                              (b) 

Figure 4: (a) Impulse response for 𝐾𝑝 = 600, (b) Impulse response for different 𝐾𝑝 values 

 

As shown in Figure 5(a) in the closed-loop transfer function with a PD controller for the TWSBR 

system all the poles and zeros were located on the left half-plane in the complex s-plane. Therefore, 

after the PD controller was implemented the TWSBR system managed to maintain stability. Figure 5 
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(b) shows the impulse response of the system after implementing the PD controller. It shows TWSBR 

system can maintain stability after 0.01 seconds for impulse response. 

 

 
(a)                                                                             (b) 

(b)  
Figure 5: (a) Pole-Zero Map for closed-loop transfer function with a PD controller (b) Response of 

the two-wheeled robot to an impulse disturbance under PD controller. 

 

From Figure 6 it is seen that implementing the PD controller TWSBR system response is improved 

compared to the P controller implemented system. Implementing a PD controller shows that overshoots 

and settling time are reduced in the system. However, the PD controller produces an overshot as shown 

in Figure 6.  

 

 
 

Figure 6: Response of the two-wheeled robot to an impulse disturbance under PD and P controller. 
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  Figure 7 (a) illustrates the root locus derived from the loop transfer function 𝐺𝑐(𝑠)𝐺(𝑠) for the 

TWSBR equipped with a PID controller. The observation indicates that the closed-loop poles transition 

into the open left-half-plane when the gain reaches a sufficiently high level. When the damping ratio 

is set to 1, the resulting gain K is calculated to be 20. The calculations for Kp, Ki, and Kd were conducted 

systematically. 

            From Figure 7 (b) it is seen that implementing the PID controller TWSBR system response is 

improved compared to the PD and P controller implemented system. Implementing a PID controller 

shows that overshoots and settling time are reduced in the system.  

 
(a)                                                                                 (b) 

 

Figure 7: (a) Root-locus of the loop gain of the TWSBR with PID controller. (b) Response of the 

two-wheeled robot to an impulse disturbance under P, PD, and PID controller. 

 

4. Conclusions 

This work discussed the computational study of the TWSBR system which can be used as a practical 

example in the study of control theory. The mathematical model for the TWSBR system was derived 

using the Newtonian dynamics equations first. Due to the nonlinearity of the dynamic model, it was 

transformed into a linear model and quantitatively expressed in both the state space and frequency 

domain using its transfer function. By using the transfer function stability analysis of the TWSBR 

system was done by pole-zero map and impulse response analysis. It was found that the TWSBR 

system is naturally unstable. To address the TWSBR system's instability, the first P controller, the 

second PD controller, and finally PID controller were designed and implemented and the system 

response against the implemented control algorithms was tested and simulated using computational 

tools. From the three controllers tested PID controller successfully stabilized the TWSBR system with 

good dynamic performance. This current study has certain limitations due the non-consideration of 

real-world uncertainties such as sensor noise and external disturbances by this model; thus, 

implementation of advanced nonlinear control algorithms, such as adaptive or robust controllers, to 

address these challenges can be studied in future. 
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