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Abstract 

Aboveground biomass (AGB) contained in privately-owned forests is less frequently measured 

than in forest reserves despite their greater likelihood of degradation. We demonstrate how density 

changes in contrast to species compositional changes have driven AGB changes in privately-owned 

fragments in Uganda over two decades. Data on tree assemblages in fragments were obtained by re-

sampling a 1990 dataset in 2010 and AGB estimated using generalised allometric equation that 

incorporates diameter at breast height (DBH) and species-specific wood density. AGB were highly 

variable between fragments and over time. Structural changes contributed a higher proportion of 

change in AGB than species compositional changes in all forests. Non-pioneer species constituted 

over 50% of AGB in reserve forest, in contrast to private forests where pioneer species dominated. 

Our study demonstrates the potential of private forests to hold comparable AGB to plantation. 

Reduction in exploitation pressure is required if fragments are to mitigate carbon emissions.  
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1. Introduction 

The rate of tropical forests loss, both through deforestation and degradation, is mostly driven 

by human activities such as land use change and wood extraction (IPCC, 2007). In Africa, the role of 

human activities in these declines shows no signs of abating (MEA, 2005; Schleuning et al., 2011). 

Deforestation, mainly due to conversion of forests to agricultural land, shows signs of decreasing and 

in tropical Africa it is currently 3.4 million hectares annually and contributes to between 12 and 20% 

of anthropogenic carbon emissions (FAO, 2006; FRA, 2010). In addition to deforestation however, 

degradation in the form of selective logging in both public and private forests is becoming a dominant 

form of land use change in Africa, and large parts of forested areas have been impoverished by this 

direct form of human activity (Asner et al., 2004). Despite the clear expectation that degradation 

pressures varies among public and private forests and that it leads to short and long lived effects on 

ecosystem processes and functions (MEA, 2005), few studies have contrasted private urban and public 

forests. For instance, the likely alteration of forest potential for carbon storage due to degradation is 

not completely understood yet. Thus based on current projections of forest degradation there is a need 

to examine how different components of degradation affect ecosystem processes that sustain the 

provisioning of goods including carbon storage and services to society. 

Forest degradation can be considered as two separate components: firstly timber volume loss 
through harvesting, which leads to structural changes (tree size and density change) when particular 

size classes are selected, and secondly species compositional changes which involve shifts from non-
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pioneer to pioneer species in response to selective logging (Oliveira et al., 2004). Both components can 

impact forest carbon storage and other ecosystem services. The pioneer species typically have lower 

wood density and thus retain less carbon per capita than non-pioneer old growth species (Tabarelli et 

al., 2008). Both forest structural and species compositional changes towards pioneer species are thus 

driven mainly by anthropogenic disturbance including logging, firewood production and other 

extractive activities. Partitioning AGB change into these two components is necessary to understand 

the dimensions of the most important drivers of AGB change and thus develop a set of sound 

indicators that can provide meaningful assessment for effective management interventions aimed at 

maintaining or increasing carbon sequestration in forest fragments. 

Studies that contrast public and private forests have shown that private forests are under the 

greatest threats and suffer the highest structural and compositional changes (Bulafu et al., 2013; 

Naughton-Treves et al., 2005) and that AGB heavily depends on size class frequency where 

intermediate-sized (20–50 cm DBH) stems accounted for 46.7% of total AGB (Nascimento and 

Laurance, 2002). We predict that differences in protection status will lead to high AGB loss, which 

will be driven mainly by forest structural changes, in private forests with low control on access rights 

compared to public forests. We therefore consider the roles of forest structure (i.e. volume changes) 

and species composition (i.e. species turnover) in determining the variation in AGB between private 

and public forests. Specifically we analysed: (i) the variation in AGB between forests and the effect of 

disturbance and protection status ii) temporal AGB changes among forests by size classes, 

successional status: non-pioneer and pioneer species (iii) AGB change due to volume and species 

turnover and iv) estimate AGB for dominant species among forests. Inventorying changes in AGB and 

carbon stocks will contribute to understand the role of forests fragments in global carbon cycles and 

management of existing AGB on land for GHG emission mitigation (Munishi, 2004).  

 

2. Materials and Methods 

2.1 Study sites 

The study was carried out in the greater Kampala area in central Uganda (0º 05'N–0º 16'N, 32º 

30'E–32º 38'E). The area consists of type C2 Piptadeniastrum-Albizia-Celtis forests whose sizes 

ranged from 5 to 476 hectares (Appendix 1) that extends over gently undulating land between 1200–

1250 m altitude mainly (Langdale-Brown et al., 1964). The region has annual mean rainfall 1350 mm 

with bimodal pattern, and annual mean temperature of 25°C (NEMA 2007). Twenty two fragments in 

our study area were originally surveyed by Baranga in 1990 (Baranga, 2004). Out of these, only 11 

forests remained at the time of this repeat survey in 2010 (Bulafu et al., 2013). The forests are 

interspersed within a matrix of agricultural areas (coffee-banana-sweet potatoes), cattle paddocks, 

human habitations and infrastructural developments.  

To address temporal changes in AGB, we re-sampled remnant forests: three government owned 

(public) forests (A, B and C) and eight privately owned forests (D – K; Baranga, 2004). Forest (A) is 

the nearest reserved forest to the fragments located about 28 km inland from the shore of Lake 

Victoria, managed by National Forestry Authority and was included for comparative purposes. It is 

classified as a medium altitude moist evergreen forest about 450 ha of type C2 Piptadeniastrum-

Albizia-Celtis forest (Dawkins and Philip, 1962). Forest (B) is managed by Coffee Research Institute 

located inland and consists of naturally regenerating cocoa and tea experimental plots abandoned fifty 

years ago. Eggeling, (1940) provided a detailed description of Forest (C) managed by Uganda Virus 

Institute and located near the shores of Lake Victoria. Four church owned forests (D, E, F and G); 

three forests owned by private individuals (H, I and J); and one sacred forest controlled and managed 

by a local community (K) (Figure 1) constituted the eight private forests located on private land that 

are not protected by national law. Four of the private forest fragments (D-G) were part of the once 

extensive lake shore forests of the Entebbe Peninsula on the heavily indented northern coastline of 

Lake Victoria, and are less than 3 km apart (Figure 1). Over the entire survey period, ownership type 

did not change for any of the fragments. 
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Figure 1: Map showing location of the study area and forest fragments. 

1.2. Field measurements 

Only trees plots minimum diameter at breast height (DBH) of ≥ 3.7 cm measured at 1.3 m 

above the ground rooted within 10 × 5 m plots established along the transects at 50m intervals were 

included in the original survey in 1990 and in the present survey (Baranga, 2004). For each forest 

fragment, line transects were established parallel to the longest axis and whose length ranged from 100 

to 1000 m depending on forest size and started 10 m from the edge of the fragment. Neighbouring 

transects were separated from each other by 30m. In forest A, transects were set along the already 

established trail system in a north-south direction but excluding swamp forest stands. The number of 

transects established and plots sampled are indicated in Appendix 1. 

Diameter at reference height (DRH) above the buttress was measured for species with 

buttresses higher than the breast height (Sheil et al., 2000). Tree stumps were enumerated in 10 × 5 m 

plots in each forest. Tree basal area loss was calculated using DBH of the stumps as an index of 

biomass outtake. Nomenclature followed Hamilton (1981). Voucher specimens are held at Makerere 

University Herbarium. Palms encountered in this study were omitted from the analysis as they were 

not enumerated in the 1990 survey. 

  Scores from 1 to 4 were used to assess disturbance status of the forest fragments (1 - fairly 

intact; 2 - disturbed; 3 - degraded, 4 - highly degraded) as follows: (1) presence of a distinct upper and 

middle canopy, with low density of undergrowth; (2) presence of a distinct upper, middle canopy, with 

high density of undergrowth; (3) presence of a distinct upper and middle canopy with high number of 

gaps and evidence of human activities such as tree cutting and forest clearing and (4) presence of only 

one distinct upper canopy, no or low undergrowth and high number cut trees (Figure 5). Level of 

protection was categorised as strict if a guard was employed (Forests A-C and I-J,) or weak if no guard 
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was employed by the forest owners (Forests D-H). For simplicity species were classified into two 

ecological groups, whose members share characteristics of importance for determining structure and 

composition: (i) non-pioneer (ii) pioneer species following (Lwanga, 2003). A third category 

(unknown) was reserved for unidentified species. This classification allows for some generalizations 

and comparisons. However, we recognize that there might be other subdivisions e.g. (i) shade-tolerant 

tree species of the lower woody strata of primary forest; (ii) light demanding, relatively long-lived 

species; (iii) relatively short-lived species requiring gaps for germination and establishment all of 

which were present in the dataset. Forest areas were calculated from shapes delineated from 2010 

aerial photographs and comparing with LANDSAT images of both 2010 and 1990 (30 m spatial 

resolution TM composites) in ArcGIS 10.0. 

 1.3 AGB and carbon calculations 

AGB here is used to represent only the above-ground portion of live trees ≥ 3.7 cm DBH and 

excluding palms, vines, litter, dead trees and roots. AGB was estimated for each stem with the 

commonly used moist forest AGB equation (Chave et al., 2005). Data on stem DBH and woody 

density at genus/species level were incorporated into the allometric equation for AGB estimations as 

adopted by Alves et al., (1997). We used a generalised allometric equation for moist forest stands 

incorporating DBH and species specific values of wood density to estimate AGB (Chave et al., 2006):  

(AGB) est =ρ  exp (-1.499 + 2.148 ln (DBH) + 0.207 (ln (DBH))
2 

-0.0281 (ln (DBH))
3
) 

Where: ρ is wood density (gcm
-3

). 

Species-specific wood densities were taken primarily from the UN Food and Agricultural 

Organisation and World Agroforestry's Wood Density Database, supplemented by the PROTA 

database www.worldagroforestry.org/Sea/Products/AFDbases/wd/ (following Chave et al., 2006). For 

species with unknown wood density, the mean wood density of all species of the same genus found in 

the literature search was used, as genus is a good predictor of species wood density (Chave et al., 

2006). We used AGB generated from the above equation to estimate its variation between forests by: i) 

size class as follows: mature trees > 40cm DBH; adult trees 20-40; young trees 10-20; and saplings < 

10 and ii) by successional status i.e. non-pioneer and pioneer species. 

To investigate the main mechanisms driving AGB changes in the forests, we partitioned AGB 

change into structural, compositional and total change as follows:  

δV=v10 x d90 - v90 x d90; δD=v90 x d10 - v90 x d90; δ AGB=v10 x d10 - v90 x d90 

Where δV is change due to structural (volume) differences only; δD is change due to species 

compositional differences (density) only; δ AGB is total AGB change. v10 and v90 are volume in 

2010 and 1990 sample regimes respectively; d10 and d90 are weighted mean wood densities of 

species in 2010 and 1990 sample regimes respectively. To investigate the effects of level protection, 

disturbance index on AGB, we used non-parametric Kendall’s rank correlation tau test. 

Forest AGB standard errors (SE) were calculated as standard deviation divided by the square 

root of the sample size. Finally, tree AGB was converted into carbon through multiplication by 0.5 

(moist forest equation, Chave et al., 2005). Data preparation and AGB analyses were performed using 

the R statistical language version 3.0.1 (R Core Team, 2013).  

 

3. Results 

In 1990, forests showed high variability in the amount of AGB, ranging between 99.6 ± 11  t ha
-1 

and 

68.6 ± 9 t ha
-1 

 in public forests and between 55.3 ± 8  t ha
-1 

 and 95.1 ± 11 t ha
-1 

 in private forests 

while in the current survey AGB ranged between 91.7 ± 11 t ha
-1 

 and 83.2 ± 9 t ha
-1 

 in public forests 

and between 21 ± 15 t ha
-1

  and 83 ± 9 t ha
-1

  in private forests (Figure 2a). We found that AGB 

decreased with an increase in disturbance index (Kendall's Tau = -0.674, P = 0.01) while AGB 

increased with protection status Kendall's Tau = 0.713, P = 0.01). AGB differences were seen when 
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comparing tree size distribution in forest fragments or when comparing species ecological 

successional status (Figures 2 a & b). Large trees (DBH > 40 cm) contributed between 40-46% of total  

AGB in our forests fragments, while the small trees (< 10 cm DBH) contributed between 8-13% of 

total AGB. Non-pioneer species constituted the greatest amount of AGB in the public forests while in 

private forests, pioneer species held the most AGB (Figure 2b). Biomass removal in the current survey 

showed idiosyncratic trends across size classes with highest removal taking place in the private forests 

(Figure 3). 

 
Figure 2: AGB (t ha-1) estimates per DBH size class (cm) from allometric equation for forest 

fragments in Kampala area divided by (a) DBH size classes and (b) successional status. 

(Full names for sites A-K can be found in Table 1) 

 

Over time, there were high declines in the amount of AGB in several of the forests. For 

example, private forests, particularly church forests E, F and G, had the highest declines in the amount 

of AGB, losing between 40 and 77% (Figure 2a). Public forests showed minimal declines (Figure 2a 

forest A) or slight increases in amount of AGB stored over the two decades, particularly in large sized 

trees (Figure 2a forests B and C). Over two decades, biomass change generally showed idiosyncratic 

trends across size classes (Figure 2a). Forests I, J and K show compensatory growth in that AGB 

decreased in large-trees, yet in intermediate-sized trees (DBH cm 20-40) AGB increased (Figure 2a), 

The highest proportion of change in AGB was due to structural changes  with species compositional 

changes  playing a minor role, particularly in church forests (Figure 4). The covariance, which relates 

to unequal representation of species across size classes, represented a small fraction of AGB change 

across forest fragments (Figure 4).  

Considering the top five species contributing to the most AGB across forests, no single species 

was consistently among the five species of highest per-hectare AGB across forests. Within forests, the 

species with the highest AGB were not exactly the same five species for each time period. Overall, in 

the non-pioneer successional status group, Trilepisium madagascariense DC., Pseudospondias 

microcarpa (A.Rich.) Engl., Antiaris toxicaria (Rumph.ex Pers.) Lesch., Sapium ellipticum (Hochst.ex 

Krauss) Pax and Manilkara butugi Chiov held 66% of AGB while Maesopsis eminii Engl., 

Piptadeniastrum africanum (Hook.f.)Brenan, Erythrophleum suaveolens (Guill. & Perr.) Brenan, 
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Pycnanthus angolensis (Welw.) Warb., and Artocarpus heterophyllus Lam. , held 64% of the AGB in 

pioneer successional group (Appendix 2). 

 

 

Figure 3: Distribution of biomass removal (mean stems/ha) per DBH size class (cm) in Kampala forest 

fragments for the current survey. 

 
 

Figure 4: Change in AGB (t ha
-1

) due to volume and density changes over two decades for forest 

fragments in Kampala area. (Full names for sites A-K can be found in Table 1) 
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Figure 5: Profile diagram of forest fragments in 2010 for: A) Government forest A; B) Private forest 

H; C) Church forest F and D) Sacred forest K. For forest codes see Table 1. 

 

4. Discussion 
 

Aboveground biomass varied strongly between forest fragments under different protection 

levels and ownership, with public-owned forest holding the highest AGB. We additionally found a 

considerable reduction in AGB (and consequently in carbon) over time in privately-owned forests, 

mainly driven by structural changes in the forests and particularly by significant reductions in stem 

densities over the two decades in the four size classes investigated. 

Furthermore, large trees contained the majority of AGB, our results showed that the 

importance of medium-sized trees in compensating for loss of large trees in some of the private 

fragments. In private forests, biomass removal showed idiosyncratic trends across size classes. Our 

forest fragments are in the same climatic region and thus variations in abiotic factors such as soil, 

rainfall and temperature are too small to have a major effect on AGB changes reported here. 

Elsewhere these factors have been shown to have small or no explanatory power for the AGB patterns 

(Tabarelli et al., 2010; Baraloto et al., 2011). Human related disturbance in the form selective logging 

and fragmentation effects seem to be the prominent factors responsible for the observed variation 

between forests and over time. 

In our study sites, the public forests stored more AGB and were less affected by structural 

changes than the more disturbed, private or smaller forest fragments which were under high extraction 

pressure thus experienced high structural changes. Generally, compositional changes played a minor 

role in the AGB changes in our study systems. 

The forest reserve estimates compare well with those reported elsewhere for similar tropical 

high forests at normal stocking densities associated with the moist lowland agro-ecological zone of 

Uganda, which ranged between 80 and 180 t ha-1 (Drichi, 2003) and other moist forest types 

elsewhere in Africa, e.g. 120-135 t ha-1 in  Mozambique and 140 t ha-1 in Gambia (Brown, 1997). 

The high values of AGB in reserved forests can be attributed to low changes in stem density (low 

structural changes), relatively high density of large trees akin to intact mature forest with minimal 

anthropogenic disturbances. Forest types with larger trees have been shown to accumulate more AGB 
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hence more carbon (Munishi, 2004). In the private forests, the high volume changes resulted in 

massive AGB declines and we attributed this to high biomass extraction pressure accentuated by the 

greater annual demand for firewood by the community, as well as to inefficient policing and 

management by forest owners (Bulafu et al., 2013; Baranga et al., 2009). We report AGB of between 

21 t ha-1 and 83 t ha-1 and compared well with hardwood plantations in similar ecological zone, 

which can store between 88 ha-1 and 90 ha-1 (Drichi, 2003).  Forest subjected to disturbance in the 

form of selective logging has been shown to have lower AGB than their potential (Brown, 1997). 

Disturbance and fragmentation both increase forest edge-related effects, consequently reducing forest 

capacity for AGB retention. Studies in fragmented Brazilian landscapes with high edge effects were 

shown to retain only one-third as much carbon as forest interior habitat (Dantas et al., 2011); the 

strength of fragmentation effects would probably vary with climate, and forest type.  

In our study, the largest trees stored most (over 40%) of the AGB and carbon, underlining their 

importance. This agrees with other studies where large trees have been reported to account for more 

than 30% of AGB in mature forests (Brown and Lugo, 1992; Nascimento and Laurance, 2002). Private 

forest fragments had fewer large trees compared to the forest reserve and this is again related to 

anthropogenic disturbance (Bulafu et al., 2013). Over the re-sample period, our results show a 

reduction in the amount of AGB stored in some fragment, with high declines in basal area across size 

classes. These changes can be attributed to selective logging of trees and associated forest structural 

changes (Bulafu et al., 2013). In other studies, reduction in AGB and carbon retention have primarily 

been associated with increased mortality of large trees up to 300 m from forest edges (Chambers et al., 

2001; Nascimento and Laurance, 2004; Alves et al., 2010) combined with a lack of compensatory 

effect of the remaining canopy and understorey (Dantas et al., 2011). For instance, AGB of forest 

edges in the Amazonian forest was reduced by one third in just 10-17 years after habitat fragmentation 

(Oliveira et al., 2008). A lesser contribution of large stems would also be expected for habitats that are 

more heavily logged such as most of our forest fragments (Chave et al., 2003; Baraloto et al., 2011). 

We document increases in AGB in the intermediate (20-40 cm DBH size class) in three forests in our 

study that showed marked declines in large sized trees and we interpreted this as a form of 

compensatory growth. This can be attributed to either recruitment of young trees into intermediate size 

classes being assisted by reduced competition from mature trees, or by limited or reduced mortality 

from human exploitation of intermediate size classes for timber or firewood. Pioneer species seemed 

to be responsible for this compensatory effect at least in two of the three forest fragments. 

The increased mortality of large trees in some fragments may facilitate proliferation of long-

lived pioneer species. The low value of mean wood density and subsequent per capita carbon relative 

to old-growth flora, suggest that increased long-lived pioneer species explain the low AGB and carbon 

retention in disturbed forests (Tabarelli et al., 2008). Rather than making only a minor contribution, 

Dantas et al., (2011) suggest that species replacement is a “key mechanism” in the recovery of 

biomass in stands where the large trees have been removed, such as the fragments in this study. 

Consequently marked variation in the AGB and species turnover of large trees have significant 

implications for carbon accounting and the future of tropical forests and calls for a better 

understanding of large tree allometry (Goodman et al., 2012). Belowground biomass was not 

measured in this study and estimates of it are scarce, it nevertheless represents an important stock of 

biomass. In tropical lowland terra firme rainforests in Brazilian Amazonia, belowground root biomass 

averaged 20% of AGB (Sarmiento et al., 2005).Using this mean value, root biomass in our forests 

would range from 5-12 t ha-1 across forest fragments in the current sample. We do not have an 

estimate of fine litter and coarse dead wood as their dynamics are poorly understood, although it has 

been estimated that coarse woody debris may be 10 to 40% of the AGB and can serve as a long term 

carbon pool. The amount given by Uhl and Kauffman (1990) here may be an overestimate for our 

forests as it is based on relatively intact forests.  

For large well managed forests, the 2010 value of carbon revenues based on the carbon offset 

market wide average of $9.2 per tonne of sequestered carbon could present significant revenues gains 

based on present 2010 AGB. Africa saw 100% growth in contracted forest credit volumes, with 97% 
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of credits sold to voluntary buyers in the European Union. Uganda was the 4th largest offset supply 

country in 2011, mainly from REDD+ related projects (Peters-Stanley et al., 2012). The majority of 

projects are on private land but increasingly involve communities and smallholder landholders. 

However, transactional costs for small natural forest owners might be prohibitive to engage in 

improved forest management so as to benefit from the REDD+ carbon credits schemes compared to 

alternative agricultural land uses. In this case such forest stakeholders can be encouraged to avoid 

deforestation by the provision and support of alternative sources of income generation such as eco-

tourism, non-timber forest products production and forest commodity processing. This would help 

compensate the full range of economic gains that would accrue from deforestation, i.e. the opportunity 

cost of abandoning less sustainable activities. When combined with restoration activities such forest 

could have the potential to increase their carbon value. Involvement of forest stakeholders in REDD+ 

carbon schemes is dependent mainly on involvement of private-sector institutions seeking to offset 

emissions to increase demand coupled with appropriate price signals (Peters-Stanley et al., 2012). 
 

5. Conclusion 

We show massive AGB variability between fragments over time. Our results confirm our 

prediction that differences in protection status will translate to noticeable differences in AGB loss that 

were driven mainly by forest structural changes. Further, there were differences between private and 

reserved forest tin term of which species constituted the greatest AGB. For instance, non-pioneer 

species constituted over 50% of AGB in reserve forest, in contrast to private forests where pioneer 

species dominated. Our study demonstrates the potential of private forests to hold comparable AGB to 

plantation. Reduction in exploitation pressure is required if fragments are to mitigate carbon 

emissions.  

4.1. Implications for conservation  

Despite a lower number of large trees in the private fragments compared to reserves and 

research forests, urban fringe fragments in the Kampala area store a considerable amount of carbon 

relative to plantation forests of similar size, mostly contained in large individuals that remained. 

Proper silvicultural management of these forest fragments, allowing more trees to gain large 

diameters, has the potential to increase mitigation of carbon emissions. Here we present more realistic 

estimates of the potential of poorly-managed or unprotected fragments to mitigate carbon emissions. 

In our forests the greatest proportion of change in AGB was due to structural changes. At the 

current rate of AGB loss, some of the forest fragments are bound to lose even more of their stored 

above-ground carbon. The increased proliferation of pioneer species due to anthropogenic 

disturbances exacerbates this loss. If we are to promote forest fragments for carbon storage, 

exploitation should be reduced, especially for the large sized trees and late-successional species. 

However, exploitation is likely to increase in such small, edge-affected fragments as are found in 

human-modified landscapes such as the Kampala area. Owners of large and well managed forests 

fragments can earn money from carbon credit based on the carbon dioxide equivalent. Contracting 

them on the carbon markets will not only reduce carbon dioxide emissions but also present gains for 

biodiversity conservation, with associated reduction in poverty and improved livelihoods (Peters-

Stanley et al., 2012). However, owners of smaller forests might be hampered due to high transactional 

costs and must engage in proper management practices and restoration activities, particularly for forest 

fragments that have been severely degraded, in order to benefit from REDD+ carbon credits schemes. 
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Appendix 1: Summary of changes in forest fragments (government owned forests (A-C), privately 

owned forests (D-G church; H-J individual; k sacred) in Kampala area for the period 1990 to 2010. 

Forest areas and extent are based on 1955, 1995 and 2010 vegetation maps. Disturbance index: 1: 

fairly intact; 2: disturbed; 3: degraded; 4: highly degraded.  

Forest 

name 

 

Code GPS 

coordinates 
No of 

transects 
No. of 

plots 
 Forest 

size (ha) 
Carbon  Disturbance 

index 

    

1990 

 

2010 1990 2010 1995 2010 

1990  

(t 

ha
-1

) 

1990 

Total 

(Mt) 

2010 

(t 

ha
-1 

) 

2010 

Total 

(Mt) 

1990 2010 

Mpanga A 0°13'N, 

32°18'E 
5 5 

50 48 476 438 50 23.8 46 20.15 1 1 

Kituza B 0°16'N, 

32°47'E 
5 5 

48 49 98 110 34 3.33 42 4.51 1 1 

Zika C 0°07'N, 

32°31'E 
3 3 

25 23 10 13 34 0.34 42 0.53 1 1 

Kibale D 0°07'N, 

32°32'E 
4 4 

27 31 42 38 42 1.76 24 0.84 2 2 

Kisubi 

Technical 
E 0°07'N, 

32°32'E 
4 4 

20 18 16 10 32 0.51 15 0.14 2 2 

Gogonya F 0°07'N, 

32°32'E 
4 4 

21 21 15 11 48 0.72 11 0.12 2 3 

Kisubi Girls G 0°07'N, 

32°32'E 
5 5 

47 18 15 13 28 0.42 14 0.18 3 3 

Wamala H 0°09'N, 

32°31'E 
6 6 

31 30 19 19 45 0.86 29 0.55 2 2 

Nzuki I 0°09'N, 

32°33'E 
5 5 

20 17 10 10 34 0.34 36 0.36 2 2 

Bunamwaya J 0°15'N, 

32°33'E 
7 7 

26 23 9 9 38 0.34 32 0.28 3 2 

Katwe K 0°11'N, 

32°27'E 
4 4 

42 18 18 5 37 0.67 39 0.19 2 2 
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Appendix 2: Aboveground Biomass (AGB t ha
-1

)
 
contribution by the five top tree species DBH ≥ 3.7 cm for forest fragments described in Appendix 1 for 

the two sample periods. See Appendix 1 for forest codes; A, B and C government owned whereas D-K are privately or community owned. 

 

Forests 

Species A B C D E F G H I J K 

 

1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 

Non pioneer  species 

Trilepisium 

madagascariense DC.* 
9.1 4.6 9.9 12.7 10.5 5.5     19.5     4.3   4.1  5.9 6.5 

Pseudospondias 

microcarpa (A.Rich.) 

Engl.* 

   12.5  6.5  3.1    2.4 4.0  68.6  12.3 6.5 17.4    

Antiaris toxicaria 

(Rumph.ex Pers.) 

Lesch.* 

   7.4  3.9      1.7   42.8  4.1 4.3  6.6 5.0 5.8 

Manilkara butugi 

Chiov.* 
8.3  6.0   7.4 13.9 2.1         6.6      

Sapium ellipticum 

(Hochst.ex Krauss) 

Pax* 

        10.5 5.8   14.4     8.3 13.5 32.0   

Vespris nobilis Engl.*       10.1  5.5        10.4 3.8  5.5   

Celtis durandii Engl.* 14.4 7.3 5.7 5.2                   

Tabernaemontana 

holstii K.Schum* 
  7.5 5.3      3.8     58.3        

Celtis mildbraedii 

Engl.* 7.9 14.0                    7.0 
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Forests 

Species A B C D E F G H I J K 

 

1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 

Funtumia elastica 

(P.Preuss) Stapf*    5.0          5.6         

Syzygium guineense 

(Willd.) DC.*             2.8       3.2   

Blighia unijugata 

Bak.*                   4.5    

Trichilia prieuriana 

A.Juss.* 11.4 6.0                     

Manilkara dawei 

(Stapf) Chiov.*     8.8                  

Oxyanthus speciosus 

DC.*     3.8                  

Pioneer species 

Maesopsis eminii Engl.      2.1  6.5 63.6 4.6 10.4 4.4  8.3  4.1  4.2  5.4   

Piptadeniastrum 

africanum (Hook.f.) 

Brenan     4.4 4.7    3.7 13.4 5.9         19.7 25.2 

Erythrophleum 

suaveolens (Guill. & 

Perr.) Brenan     3.4 13.4 6.0 5.1        4.4       

Pycnanthus angolensis 
      5.7    7.1 2.2  1.1  9.2       
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Forests 

Species A B C D E F G H I J K 

 

1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 

(Welw.) Warb. 

Artocarpus 

heterophyllus Lam.      0.7        0.9  5.7       

Lovoa trichilioides 

Harms      0.7               5.9 8.0 

Musanga leo-errerae 

Hauman & j.Leonard               20.9 4.8 4.4      

Albizia zygia (DC.) 

Macbr.           8.9       7.4     

Canarium 

schweinfurthii Engl.      3.1        1.9         

Macaranga pynaertii 

De Wild.       6.8            7.4    

Bersama abyssinica 

Fres.             3.4          

Celtis zenkeri Engl.  13.7                     

Eucalyptus grandis 

W.Hill              3.8         

Milicia exelsa (Welw.) 

C.C.Berg        3.4               

Myrianthus holstii K. 
              5.9        
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Forests 

Species A B C D E F G H I J K 

 

1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 1990 2010 

Schum 

Pinus patula Schltdl. & 

Cham.            3.3           

Psidium guajava L.             15.0          

Tetrorchidium 

didymostemon (Bail.) 

Pax & K. Hoffm.          2.5             

Theobroma cacao L.   15.1                    

. * Non-pioneer species. 

 


