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Abstract 
With advancements in related sub-fields, research on photomicrography in life science is emerging and this 
is a review on its application towards human full blood count testing which is a primary test in medical 
practices. For a prolonged period of time, analysis of blood samples is the basis for bio medical observations 
of living creatures. Cell size, shape, constituents, count, ratios are few of the features identified using DIP 
based analysis and these features provide an overview of the state of human body which is important in 
identifying present medical conditions and indicating possible future complications. In addition, 
functionality of the immune system is observed using results of blood tests. In FBC tests, identification of 
different blood cell types and counting the number of cells of each type is required to obtain results. 
Literature discuss various techniques and methods and this article presents an insightful review on human 
blood cell morphology, photomicrography, digital image processing of photomicrographs, feature 
extraction and classification, and recent advances. Integration of emerging technologies such as 
microfluidics, micro-electromechanical systems, and artificial intelligence based image processing 
algorithms and classifiers with cell sensing have enabled exploration of novel research directions in blood 
testing applications.  
 
 
 eewwrrss  cell identification, cell classification, deep learning, photomicrograph analysis, lab on a chip, 
computer vision 
 
 

Intrrsuctirn 

Rapid and accurate cell analysis is essential in identification of diseases and 

complications in human body. In this regard, various type of cell analyses are performed 

on samples obtained from blood, urine, saliva, tissue, and semen [1]. Blood tests are the 

most accessible method of assessing a biochemistry of a human body. In most cases, a 

file:///C:/Users/Dell/Downloads/amith.mudugamuwa@gmail.com


Adv. Technol. 2021, 1(3), 422-453 
 
 

  
423 

 
 

full blood count (FBC) which is also known as complete blood count (CBC) or full blood 

examination (FBE) provides adequate information to identify abnormal conditions in 

human body. In other words, by testing a human blood sample, a person with a disease, 

disorder or deficiency is identified based on variations of white blood cell (WBC) count 

(or leukocytes count), red blood cell (RBC) count (or erythrocyte count), platelet count, 

hemoglobin concentration, hematocrit, RBC indices, etc. compared to ranges defined for 

a healthy person [2]. In addition, counts of neutrophils, lymphocytes, monocytes, 

eosinophils and basophils are also important in identifying various medical conditions 

such as types of anemia, viral or bacterial infections, tuberculosis, radiation exposure, 

arthritis, etc. [3]. Although FBC is a medical assessment, by using as a regular monitoring 

method it is possible to avoid and cure a variety of illnesses and conditions at early stages 

using abnormal indications provided by the FBC report. Bellan et al. presented a study 

on predicting in-hospital mortality in COVID-19 based on simple parameters obtained in 

a CBC [4], Madjid et al. presented the use of components of a CBC as risk predictors for 

coronary heart disease [5], and Camon et al. studied FBC values to predict poor outcome 

of pneumonia among patients with HIV infection [6]. Figure 1 shows an overview of cell 

sensing using photomicrographs with a single cell and multiple cells.  

 

Figure 1. An Overview of Photomicrography based Cell Sensing 
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In conventional FBC testing, WBC, RBC and platelet counts are obtained by observing an 

individual blood sample at a time using an optical microscope to identify the cells and 

manually count different types of blood cells by a skilled hematologist, who is well 

trained for the task [7]. A hemocytometer is used as a counting chamber to assist manual 

counting, yet the results depend on the ability and the performance of an individual 

person who carries out the test [8]. Over the past few decades, semi-automatic and 

automatic blood testing equipment are developed to overcome disadvantages such as 

volatility in test results, higher time consumption for an individual sample, errors due to 

human fatigue, limitations in increasing the productivity of laboratories, and 

comparatively lower efficiency, that arise when hematologists directly examine the blood 

sample to identify cells and obtain the count of differentials. At present, hematology 

analyzers (or automatic cell counters) are the most common high-tech devices used to 

perform various types of tests on human blood samples. HemaCAM by Fraunhofer 

Institute for Integrated Circuits IIS, Germany [9], Vision Hema by West Medica, Germany 

[10], EasyCell by Medica corporation, USA [11], and CellaVision® DM9600  by 

CellaVision. Sweden [12] are commercially available hematology analyzers. Advantages 

of hematology analyzers are the ability to handle a large set of samples efficiently, higher 

accuracy, ability to perform multiple tests in one single platform, and comparatively 

increased precision [13]. Hematology analyzers are based on cytometry principles and 

use imaging techniques, Coulter effect, and conductivity based methods to detect blood 

cells [14]. Imaging flow cytometry (IFC) is a branch of flow cytometry, which is a non-

destructive testing method based on photomicrographs of single cells. Measurements of 

blood cells in IFC are based on scattering and absorption of light by individual cells and 

measurements in Coulter effect method are based on electrical impedance variation. 

Therefore, the two principles obtain different properties of cells which have directed to 

study on combining the imaging techniques with Coulter effect method into a single 
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system to deliver a broad result using one blood sample [15]. XN-Series by Sysmex, Japan 

[16], ADVIA by Siemens, Germany [17], and CELL-DYN Sapphire by Abbott 

Laboratories, USA [18] use a combination of detection methods to perform blood tests. 

Although, conventional hematology analyzers dramatically reduce human error factors 

at an increased efficiency, these devices have disadvantages such as the higher cost, 

complexity in sample preparation, reduced monitoring capability compared to manual 

testing, limitations in extracting cell properties, etc. [19]. Therefore, continuous efforts to 

address aforementioned challenges have led to implementation and integration of 

emerging technologies such as computer vision, digital image processing (DIP) and 

artificial intelligence (AI), and microfluidics with conventional testing methods [20]–[22].  

Peripheral smear analysis (PSA) is a test which is performed as a part of FBC test or is 

prescribed following a FBC test if the result indicate abnormal values [23], [24]. Similar to 

FBC test, a blood sample is observed under a microscope in PSA therefore, 

photomicrography technique is utilized in obtaining peripheral smear images in which 

the acquired images contain multiple cells of a single type or a mixture of different types 

of human blood cells. Integrating an image acquisition device with a microscope provides 

the capability of obtaining photomicrographs enabling further processing and analysis of 

blood samples by transferring the photomicrographs to a processing unit and deliver test 

results based on the measured properties of individual cells and the peripheral smear 

image as a whole [25]. Therefore, photomicrography is capable of performing FBC test 

and PSA using the same photomicrographs at once which reduces the tedious task of 

carrying out two tests on the same sample and increase the comfortability to patients by 

eliminating the requirement of drawing blood at multiple times [26]. In addition, this 

adds higher computational capabilities to the system which is essential in introducing 

alternatives to human operations in observing, identification and analysis tasks using 

image processing and feature extraction methods followed by decision making 
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techniques such as fuzzy logic, neural networks, machine learning, deep learning, etc. 

[27]. Studies toward introducing high-end computer vision based methods into biological 

assays show a rapid development as a results of outstanding improvements in micro-

electromechanical systems (MEMS), optical systems, microelectronics, image processing 

techniques and algorithms [28]–[30]. Microfluidics is an emerging multidisciplinary field 

of science which is widely studied towards biomedical applications due to the advantages 

such as compactness of the systems, less volumetric requirements for biological assays, 

mobility, avoiding the need of large laboratory facilities, easy access, less time, minimum 

utilization of resources, etc. [31]. Several microfluidic devices based on Lab-on-a-Chip 

(LOC), Lab-on-a-Paper (LOP) and Organ-on-a-Chip (OOC) technologies are developed 

and successfully utilized in applications related to pathology detection, drug 

development, biological assays, organiods, cancer research, etc. [32]–[35]. 

Human Blrrs Cells 

Human blood is the medium that transports oxygen absorbed from lungs and nutrients 

to the whole body. Human blood contains ~55% of blood plasma, ~45% of RBCs, and ~1% 

of WBCs, platelets and other elements [36] and the Figure 2 shows a photomicrograph of 

a human blood sample including RBCs, types of WBCs and platelets. 

 

Figure 2. Photomicrograph of a Human Blood Sample [37] 

RBCs have a biconcave shape and are dominant among all types of blood cells in terms 

of the cell count in a human blood sample. WBCs are commonly rounded but sometimes 

Basophil 

Segmented 

Neutrophil 

RBC  Platelet 

Eosinophil 

Monocyte 

Lymphocyte 

Band 

Neutrophil 



Adv. Technol. 2021, 1(3), 422-453 
 
 

  
427 

 
 

appear in irregular shapes and are comparatively dominant in individual cell size. 

Normal range of the RBC count for healthy men varies from 4.7 - 6.1 million cells per 

microliter and in women from 4.2 - 5.4 million cells [38]. WBCs are responsible for the 

immune system of the body and consists of five sub-types which are neutrophils (40-

60%), lymphocytes (0.5-1%), monocytes (2-8%), eosinophils (1-4%) and basophils (20-

40%) [39]. Platelets are comparatively less in number and are responsible of minimizing 

complications due to heavy blood losses by forming blood clots to stop bleeding. In 

normal condition, about 150,000 – 450,000 platelets exists in a microliter of human blood. 

Rapid decrement or an increment of the platelet count indicates that the patient require 

extensive medical assistance. Platelets are tiny (1-5 – 3 μm) compared to RBCs with a 

diameter of 6 - 8 μm and WBCs with a diameter of 12 - 15 μm, therefore are the most 

challenging blood cell type in imaging and identification compared to other cell types 

[40].  

Phrtrmicrrgraphw  

 

Figure 3. Photomicrography 
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Based on the imaging technique followed additional hardware requirements arise and 

variations of the arrangement for photomicrography is observed [41], [42]. The captured 

digital image is called a photomicrograph or a micrograph. Sample preparation is the 

important initial step of photomicrography and literature present various methods 

depending on the cell type at interest as well as the microscopy technique [43]–[45]. 

Staining is a technique performed in sample preparation to enhance contrast of the image 

by introducing a substance that penetrates to the cell giving a significant color to the cell 

which improve the visualization capability of the sample [27], [46]. Novel blood sample 

preservation techniques such as the method proposed by Chaurasia et al. have enabled 

new directions towards blood tests [47]. Balanant et al. presented detailed instructions 

for sample preparation of human RBC for confocal imaging and followed a re-suspension 

step using a high content of glycerol to obtain high quality by reducing spherical 

aberration [48].  

Hardware development of life science microscopes have enabled new dimensions to 

biological research and also routine laboratory work. Microscopes are classified under 

three major categories which are optical microscopes, electron microscopes, and scanning 

probe microscopes [49]. In terms of applying photomicrography for life science research, 

microscope is the most commonly utilized optical instrument to magnify the biological 

sample and the widely used optical microscopes use a set of lenses to refract the visible 

light beams passing through the sample. In addition, electron microscope type, scanning 

probe microscope type, confocal type use an electron beam, a probe and a laser beam 

respectively, to interact with the sample to generate images [50]. Figure 4 shows 

photomicrographs of blood samples obtained from patients with several anemia types 

and are captured using an optical microscope and a microscopic camera. 
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Figure 4. Photomicrographs of a Blood Sample of a Patient with (a) Iron Deficiency Anemia; (b) Sickle 

Cell Disease (c) Myelomonocytic Leukemia; and (d) Pernicious Anemia [51] 

Among various features of microscopes, the magnification, contrast enhancement 

techniques, number of eye pieces, type of lighting and the microscope configuration are 

considered when discussing vision based microscopic systems. The magnification of the 

microscope depends on the magnification of the eyepieces which is fixed in most 

microscopes and the magnification of the objectives which is changed by changing the 

objective. Microscopes consist of a revolving nose piece which is capable of 

accommodating several objectives and objectives with different magnifications, 

numerical aperture, chromatic correction range and image flattening features are 

available in the market [52], [53]. MPLN series of introduced by Olympus, Japan include 

MPLN5x, MPLN10x, MPLN20x, MPLN50x, and MPLN100x which has different 

magnifications [54]. Similarly, other manufacturers such as ZEISS, Germany [55] and 
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Leica Microsystems, Germany [56] produce objectives which are mainly categorized as 

achromats, semi-apochromats, and apochromats based the performance against on 

chromatic aberration. Oil-immersion objectives reduce distortion of light-waves passing 

through the objectives enabling high resolution microscopic observations, yet require 

additional steps before the observations to reach the optimum performance of the 

microscopic system [57]. MPLAPON-Oil Plan Apochromat from Olympus, Japan is an oil 

immersion objective with high level of chromatic correction and resolution capability 

[58].  Utilizing advanced manufacturing technologies Olympus has developed a novel 

proprietary polishing technology that has enabled manufacturing the most recent high-

performance series of X Line objectives with improvements in all major three aspects 

which are numerical aperture, image flatness, and chromatic correction range [59]. 

Contrast enhancement techniques such as bright-field, dark-field, phase contrast, 

fluorescence, polarization, confocal laser scanning, and differential interface contrast 

(DIC) are commonly utilized in optical microscopes to increase the quality of observing 

sample and increase the clarity of the photomicrographs [60]. Based on the number 

eyepieces, microscopes are classified as monocular, binocular and trinocular microscopes 

and the trinocular microscopes consists of an additional observation tube for the camera. 

The common use of microscopes in life science has transformed from conventional optical 

microscopes to motorized digital microscopes, which is a combination of advanced 

mechanical components, optical imaging, electronic detection, and computerized 

analysis thereby, to provide optimized configurations for cell biology [61].  

In general, a microscopic camera consisting an image sensor is used to acquire 

photomicrographs and two types of image sensors are charge coupled devices (CCD) and 

complementary metal oxide semiconductor (CMOS) [62], [63]. Olympus DP74, SC180, EP 

50 [64], Zeiss AxioCam ERc 5s, Axiocam 208, Axiocam 305 [65], and Leica DMC4500, 

FLEXACAM C1, EC4 [66] are several microscopic camera models available in the market. 



Adv. Technol. 2021, 1(3), 422-453 
 
 

  
431 

 
 

The level of compactness and lightweight compared to performance is the main 

advantage of microscopic cameras.  Due to these aspects, the prices of microscopic camera 

systems are comparatively higher than general-purpose camera devices [67]. Desai et al. 

studied towards the use of general purpose digital camera for blood smear imaging as a 

solution to high-cost of microscopic cameras [68]. Camera resolution typically specified 

in megapixels (MP) expresses the amount of visual details capable to capture by a camera 

or the number of data points in a specific image area. For applications where precise 

monitoring is required, higher resolution camera systems are the most suitable. The 

frame rate of a camera is specified by frames per second (fps) and it quantifies the number 

of images captured by a camera in a defined time period. A high-speed camera is capable 

to reach 10000 frames per second while general cameras captures 30 to 60 frames per 

second. Therefore, high-speed cameras are capable to precisely observe moving objects. 

Camera manufacturers such as PHOTRON (Tokyo, Japan) [69], PHANTOM (Wayne, NJ, 

USA) [70], FASTEC (San Diego, CA, USA) [71] produce series of high-speed cameras 

suitable for microscopic observations with minimum vibrations and with the ability to 

mount the camera to the imaging tube of microscopes [72]. FASTCAM Mini AX, 

FASTCAM Mini UX, Miro C, Miro N, HS, TS, and IL are few examples for high-speed 

camera models suitable for photomicrography applications [73]. Cameras are developed 

with the capability to transfer the microscopic images using a wired, wireless or cloud 

based communication method for further processing and analysis.  

Optical imaging, radiography, magnetic resonance imaging (MRI), computerized 

tomography (CT), and ultrasound (US) imaging are few techniques used in the field of 

biomedical imaging [74]. Optical imaging methods are widely applied clinically and in 

research due to the availability of equipment, ability to obtain structural and dynamic 

features of cells, and the possibility to implement without physical contact [75]. In 

addition, recent advancements in high-resolution imaging and high-contrast imaging are 
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important for human cell identification. High-resolution imaging technique capture 

detailed images of objects in a sample which is beneficial in sensing human blood cells 

[76]. In cell imaging high-contrast imaging technique is utilized where the density 

differences are notably distinguished such as in identification of RBCs, different types of 

WBCs, and platelets. Conventionally, CT technique is a combination of x-ray imaging 

with statistical data analysis [77] and Lee et al. presented a study on in-vivo blood vessels 

imaging of a rodent using photoacoustic CT imaging and studied high-contrast optical 

imaging using 128 unfocused ultrasound transducers together with a laser of wavelength 

532 nm and a camera having a CCD image sensor to capture images of the rodent in 3600 

angle at 1.50 steps, which are used to generate a 3D volumetric video [78]. In vivo cell 

imaging based on oblique back-illumination capillaroscopy (OBC) is a non-invasive, label 

free, phase contrast microscopy based method used to resolve blood cells in veins. McKay 

et al. studied using a green LED for illumination (Superbright 1W XLamp LED, 88 lm, 

527 nm) for OBC imaging and characterized absorption-enhanced and phase-enhanced 

images, resulting successful visualization of RBC, platelets, WBC and sub-cellular 

granules of WBCs inside veins [79]. 

Imaging Flow Cytometry (IFC) 

IFC is a single cell analysis method which is capable of extracting multi-parametric 

features of each cell in a blood sample and it is a combination of tradition high throughput 

flow cytometry with high resolution bright-field fluorescent microscopy [80]. Although, 

IFC is commonly applied to identify specific types of cells such as in acute leukemia, 

sickle cell disease, tumor malignancies, bacterial and viral infections [81]–[84], etc., 

performing IFC on a blood sample deliver parameters related to FBC while providing an 

in-detail result of the sample [85]. In addition, literature present studies on classification 

and quantification of erythrocytes, lymphocytes, and platelets in a manner of identifying 

individual cell types [86]–[88]. Following the basic steps used in flow cytometry, 
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fluorescence imaging based photomicrography is utilized in IFC and figure 5 shows the 

steps followed in IFC.  

 

Figure 5. Imaging Flow Cytometry 
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images is a barrier in generalizing image analysis techniques [96]. Image augmentation is 

a DIP technique performed to increase the number of images in a dataset and color 

augmentation, cropping, flipping, rotation, translation, occlution, noise injection, random 

erasing, combination and advanced deformable augmentation are few methods 

discussed in literature [97].  Image enhancement is commonly done using digital image 

representation, image restoration, morphological processing, filtering, arithmetic and 

logic operations, geometric operations, neighborhood processing, convolution and 

correlation and histogram processing [98]. A digital image is a matrix of pixels and each 

pixel is represented by bits when storing in a computer memory. Bit values are important 

in understanding and processing the image because values of each bit represent 

properties of the image. Binary images (black and white), grayscale images, color images 

(RGB, CMY, YIQ, etc.), indexed color images, and compressed images (TIFF, JPEG, GIF, 

etc.) are the types of image representation methods discussed in literature [99], [100]. In 

a study presented by Deepa et al. the photomicrographs are primarily enhanced by 

converting the RGB color image to a grayscale image as a preparatory conversion for 

noise removal [101]. Mahanta et al. presented a study on automated counting of WBCs 

and platelets using a conversion from RGB image to LAB color space which includes a 

luminosity layer (L) and two chromaticity layers (A,B) [102]. Following a RGB to LAB 

color space conversion, Dey et al. extracted chromaticity layers and obtained an image 

which visualize WBCs and platelets significantly clear compared to RBC [103]. Iqbal et 

al. presented an improved compression algorithm for JPEG compression to obtain a 

higher compression ration while maintaining the quality of the images [104]. Image 

restoration is the process of recovering an image from a degraded version. It can either 

be a blurred or a noisy image. Image restoration is capable of producing a scene that is 

relatively closer to the real scenario from an image which often fails to represent the scene 

adequately [105]. 
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With respective to morphological operations, dilation and erosion are the frequently used 

methods used in processing photomicrographs of blood cells, additionally opening, 

closing, boundary extraction and region filling are also discussed in literature [106], [107]. 

Dilation is adding pixels to object boundaries whereas, erosion is removing pixels in 

object boundaries [108]. Mahanta et al. studied binary thresholding for masking, opening 

and dilation for morphological transformation, convex hull optimization to increase 

smoothness and roundness of the platelets [102]. The results of the study reported an 

accuracy of 95.59% for the platelet count and 100% for WBCs. Furthermore, in the study 

presented by Dey et al. binary thresholding, erosion and dilation morphological 

operations, and area removal is used to isolate the platelets and the results achieved an 

accuracy of 92.71% for the automated platelet count compared to manual counting for 

100 human blood smear samples [109].  

In photomicrographs, noises appear due to bad configurations or conditions in image 

acquisition and biological debris in blood samples such as dead cells, damaged cells, 

enzymes, etc. Talukder et al. studied on distinguishing between whole blood cells and 

debris based on far-field pattern of surface Plasmon coupled emission (SPCE) and the 

authors highlight that SPCE method is performed on images captured only using a 

camera, without utilizing an optical device for magnification [110]. Filtering or de-noising 

is a major application discussed in DIP and filters are introduced to improve peripheral 

blood cell images which contain noises such as impulse, Gaussian, white, colored, 

blurred, quantization, Poisson, speckle, and photon short noise [111], [112]. Weiner, 

median, Kuan, normal and Bayes shrink, average, Gaussian filters, finite and infinite 

impulse response (FIR and IIR), unsharp masking, histogram equalization, linear contrast 

stretching, Fourier Butterworth, Hilbert transform detail preserving anisotropic 

diffusion, minimal and band pass are several filters extensively applied on DIP of 

photomicrographs for de-noising, non-uniform illumination, color shade variations, and 
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image segmentation [113]–[116]. Pixel details in an individual color band of an image is 

isolated using color band filters (most commonly in R, G, and B color bands are 

extracted). And color band filtering is combined with other filters to obtain better 

performance in de-noising. In [117], each RGB photomicrograph is initially separated to 

color bands using band filtering, then a median filter of size 3x3 is applied on each plane 

followed by a Laplacian filter mask iteratively to enhance the image. Equation 1 is the 

definition of the Laplacian L(x,y) of an image with pixel intensity values I(x,y). 

L(x, y) =  
∂2I

∂x2
+ 

∂2I

∂y2
                                                 Equation 1 

In addition, machine learning and deep learning based filters for noise removal and 

image enhancement are discussed in recent literature [118]. 

Depending on the application and properties of the images, different image segmentation 

techniques are presented in literature including edge detection, thresholding, histogram 

processing, region based techniques, neural networks and compression, etc. [119]–[121]. 

Edge detection techniques used in DIP are categorized into gradient-based detectors 

which derives first order polynomials of an image and Gaussian-based detectors which 

derives the second order polynomial [122]. Sobel operator, Prewitt operator, and Robert 

operator belongs to gradient-based detectors [123] and Canny edge detector, Laplacian 

of Gaussian, Gabor filter and Marr–Hildreth detector are Gaussian-based detectors [124]. 

In a study on blood cell segmentation Savkare et al. implemented Sobel edge detection 

on enhanced RGB planes of the photomicrograph as a preparatory step to separate 

overlapped cells [117]. George et al. discussed an efficient method to count RBCs using 

Canny edge detection to extract RBC sizes and measure the RBC population [125]. In 

Canny edge detection, a Gaussian filter kernel is convolved with the image for 
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smoothening and the definition for a Gaussian filter kernel of size (2k+1) x (2k+1) is given 

by Equation 2. 

Hij =  
1

2πσ2 exp (− 
(i−(k+1))2+ (j−(k+1))2

2σ2 ) ; 1 ≤ i, j ≤ (2k + 1)          Equation 2 

A discrete approximation to the Laplacian filter (a convolution kernel which 

approximates the second derivatives in the definition shown in Equation 1) is convolved 

with Gaussian filter to form Laplacian of Gaussian filter. Das et al. performed a Laplacian 

of Gaussian based modified high-boosting operation for edge enhancement, deblurring, 

and noise removal for a study on efficient blood cell segmentation [126]. The Watershed 

transformation is a region-based segmentation where each pixel of the images 

corresponds to a position and the gray levels relative to each of the pixels determining 

the related altitudes [127]. In a study on WBC identification and counting [128], 

separation of overlapped WBCs is done using the distance transformation of the 

Watershed segmentation. Monteiro et al. proposed an improved methodology for 

detecting and counting blood cells using Watershed transformation solving the cell 

overlapping during the counts of RBCs and WBCs [129]. 

Thresholding based segmentation is based on a threshold value in converting a grayscale 

image into a binary image. A significant presence of a variation of the objects at interest 

with respective to the background of the image is required to perform thresholding 

segmentation. Thresholding methods are categorized into global, adaptive and histogram 

based methods. IdentiCyte, an interface to identify RBCs is presented by Garnier et al. 

using a manual thresholding method (threshold value is set manually) followed by 

Watershed method to separate overlapping cells, then noise removal is done on the region 

of interest (ROI) in the photomicrograph [130]. Automatic threshold segmentation is 

performed in a study for WBC segmentation using Otsu’s method by Salem et al. [131]  
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and achieved an accuracy of 93.3% compared to manual counting. In addition, 

performance of Watershed transformation is presented as 91.7% and the results of the 

study show that thresholding based segmentation is competitive in comparison to 

Watershed transformation. A dual-threshold method is presented by Li et al. and a 

combination of RGB and HSV color spaces is studied to overcome weaknesses in 

individual thresholding in each color space [132]. The study presents an accuracy of 

97.85% while exhibiting robustness compared to individual thresholding. Zhang et al. 

studied on nucleus and cytoplasm segmentation of WBC using a combination of color 

space decomposition and k-means clustering for cell segmentation [133]. In another 

study, a novel combination of thresholding, k-means clustering, and modified watershed 

algorithm is used for segmentation of WBCs, extraction of cell nuclei, and separation of 

overlapping cells and nuclei [134]. Putzu et al. used a threshold value based on Zack 

algorithm to apply on image histogram for background extraction for comparatively less 

computational cost. This method is followed by area opening to obtain a cleaner image 

[128]. In another study, an adaptive histogram thresholding method is used for the cell 

segmentation based on the WBC nucleus [135]. Yamin et al. proposed a blood group 

classification method based on peripheral blood smear images using vertical histograms 

[136]. 

Extracting Cell Properties using Photomicrographs 

At present, feature extraction and classification techniques are at an intensive 

development in DIP perspective, as a reason of rapid advancements in computer vision 

technology [137]. Feature extraction is the key to the cell identification which directly 

affects the diagnosis accuracy of the cell detection systems [138]. Tavakoli et al. studied 

WBC classification based on detecting cytoplasm by initially obtaining the convex hull of 

the nucleus [139]. In this study, a group of shape based features which are solidity, 

convexity, circularity (see Equation 3, 4, and 5 respectively) and another group with four 
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newly defined color characteristics based features using components of RGB, HSV, LAB, 

and YCrCb color spaces (48 color features) are extracted to improve the segmentation 

accuracy of cytoplasm detection. In defining the color based features, section of the 

cytoplasm detected inside the convex hull is considered as the representative of the 

cytoplasm (ROC). 

Solidity =  
Area of Nucleus

Area of Convex hull
                              Equation 3 

Convexity =  
Perimeter of convex hull

Perimeter of Nucleus
                                    Equation 4 

Circulariy =
(Perimeter of Nucleus)2

4×π×(Area of Nucleus)
                                   Equation 5 

Cheng Lu et al. studied automated detection of pathological cells and the extracted cell 

features are categorized under four major categories as shown in Table 1 which are shape-

based, intensity-based, gradient-based and texture-based [140].  

Table 1. Classification of Cell Properties in Feature Extraction 

Shape-bases Intensitw-bases Grasient-bases Texture-bases 

Area, Perimeter, 

Form factor, 

Eccentricity, 

Solidity,  

Major/ minor axis 

length, 

Compactness, 

Roundness, Extent   

Mean,  

Standard deviation 

(SD),  

Maximum/ 

Minimum intensity 

value,  

Entropy  

Mean/SD/Entropy 

of Gradient 

Magnitude,  

Mean energy of the 

gradient 

magnitude,  

Ratio of edge pixels 

and other pixels 

Three Tamura 

textures 

(coarseness, 

contrast, direction), 

Twenty two 

Haralick textures in 

four directions 

 

In recent studies, AI based feature extraction of blood cells  and classification techniques 

are extensively studied and are presented in literature towards cell sensing [141].  
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AI bases Decisirn Supprrt Techniques  

Research towards algorithm development for decision support reduce tedious task of 

examining the blood sample to extract cell properties and identify abnormalities [142]. 

With advancements in AI techniques, deployment of AI based approaches in DIP of 

photomicrographs are utilized for cell identification, feature extraction and analysis 

[143]–[145]. Neural network based decision support methods are widely described in 

literature [146]. Grochowskey et al. studied a learning based system for blood smear 

analysis and an Eigen faces based method to extract features from photomicrographs and 

train the neural network based classifier resulting 96% accuracy and 90% sensitivity in 

classifying RBCs compared to medical specialists [147]. Machine learning is a branch of 

AI, and in terms of image analysis machine learning require human intervention in the 

process of feature extraction. Machine learning is widely applied in blood cell analysis 

related studies and several machine learning approaches discussed in literature are 

artificial neural networks (ANNs), decision tree algorithm, support vector machine 

(SVM), Naive Bayes classifier, linear discriminate analysis, multi-layer perceptron, etc. 

[148], [149]. Supervised machine learning algorithms require labelled data, which a major 

challenge in medical imaging and unsupervised techniques used algorithms to analyze 

and cluster data. SVM is a supervised machine learning algorithm which is presented in 

several studies and it performs pattern classification based on labelled data performing 

linear and non-linear classification [150]. Jianyi et al. studied microscopic image 

segmentation based on SVM and revealed that soft interval linear classifier performs 

better than kernel function in segmentation and achieved 99.13% accuracy in 

segmentation [151]. The machine learning approach proposed by Tavakoli et al. to classify 

five different types of WBCs performs manual feature extraction  and the significance is 

that a convolutional neural network (CNN) which is generally applied in deep learning, 
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is used as the classifier for the presented machine learning approach to increase 

performance and reduce ambiguous feature extraction property of deep learning [139]. 

Compared to machine learning, deep learning technique exhibits the major difference of 

automated feature extraction [152]. Automatic feature extraction is beneficial in 

applications where the parameters to extract are not fully defined such as in 

photomicrographs of human cells but extracting unknown features from an image also 

present the disadvantage of complexity in understanding and optimizing the learning 

model [153]. Deep learning models require large dataset, therefore unique data 

augmentation techniques such as dropout, batch normalization, transfer learning, pre-

training, ones-hot learning and zero-shot learning for better performance of deep neural 

network architectures [154]. Alexnet, VGG, GoogleNet, ResNet, Highway nets, 

DenseNet, ResNet, SENet, NASNet, YOLO, GANs, Siamese nets, U-net and V-net are 

several deep learning architectures discussed in literature [155]. CNN is one type of a 

feed-forward ANN which is commonly used in DIP applications [156]. Novoselnik et al. 

presented development of a CNN with three alternating convolution layers and three 

pooling layers [157]. The presented CNN use an RGB images with a size of 300 x 300 

pixels and Python is used to program the CNN resulting an accuracy of 90.62% in 

identification of WBCs. Mudugamuwa et al. presented a study on classification of healthy 

RBCs and sickle cells based on KERAS open-source Python library and Tensorflow 

backend using RStudio software which is an open source tool for R language [158]. Figure 

6 shows the deep learning model designed which include four convolutional layers, two 

pooling layers, three dropout layers, a flattening layer and a fully connected layer in 

addition to the input and output layers. 
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Figure 6. Deep Learning based CNN Model  

Deep learning transformers models are developed on sequence-to-sequence architecture 

and the attention mechanism used in transformers are described by Equation 6 [159]. Q 

is a matrix that contains the query (vector representation of an image in the sequence), K 

are all the keys (vector representation of all the images in the sequence) and V are the 

values which are again the vector representation of all the images in the sequence.  

Atention (Q, K, V) = softmax (
QKT

√dk
) V                             Equation  6 

YOLO (you only look once) is a widely applied real-time deep learning algorithm and 

Jiang et al. presented Attention-YOLO algorithm by adding channel attention mechanism 

and special attention mechanism to the standard YOLOv3 in which Darknet-53 is used 

as the feature extraction network [160]. In comparison with the standard YOLO, 

Attention-YOLO demonstrated an improvement in recognition accuracy by 6.70%, 2.13%, 

and 10.44% for RBCs, WBCs, and platelets, respectively and the mean average precision 

is improved by 7.10%. In a study to classify lymphocytes, monocytes, eosinophils, and 

neutrophils of WBCs, a deep learning based hybrid architecture using Alexnet, 

GoogleNet and SVM is presented successfully by Çınar et al. [161].  
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Future Directirns 

Label-free imaging techniques are at interest of research work towards DIP of 

photomicrographs and Kurochkin et al. presented a study towards cell detection using 

adaptive spatial filtering and adaptive Niblack filtration to detect moving RBCs in a blood 

vessel [162]. Recent advancements in microscopy have enabled new dimensions to 

photomicrography based research. Light sheet fluorescence microscopy (LSFM) is 

capable of providing high three-dimensional spatial resolution, high signal-to-noise ratio, 

and fast imaging acquisition rate [163]. Autofluorescence is a label free cell detection 

technique explored towards cell detection and has potential for blood cell classification 

application using IFC, microscopy and fluorescence lifetime imaging (FLIM) [164]. Non-

invasive capillaroscopy is an emerging technique and Bourquard et al. studied towards 

detecting severe neutropenia optical imaging of naifold microcirculation [165]. OBC is an 

optical imaging technique in which improvements towards phase contrast microscopy, 

optimizing illumination wavelength and polarization, applying AI algorithms are at 

interest in the development of automated real-time human blood cell detection and 

analysis systems [166]. Microfluidic capillary tissue phantom developed by McKay et. al 

in [167] provides an insight of the promising future towards MEMS based devices 

towards FBC testing. In recent years, research on integrating microfluidics with blood 

tests have proven success specially in blood sample preparation, showing a promising 

future towards increasing the efficiency, testing capacity and also towards advanced 

Point-of-Care (POC) diagnostics enabling real-time detection of blood cells [168]. Zhao et 

al. studied towards a high-throughput microfluidic device for real-time individual RBC 

analysis based on photoacoustic detection [169]. A lens-less shadowing imaging 

technique is proposed by Fang et al. using a CMOS image sensor, LED light source and 

image processing software tool [170]. The study presented a very low mean error of 

percentage compared to a commercial hematological analyzer for the three WBC types at 
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interest neutrophils (3.45%), monocytes (6.04%) and lymphocytes (6.7%) which shows the 

high potential to be developed as an on-chip device with further study towards imaging 

and identification. Recent work towards deep learning methods have provided a new 

direction towards classification and counting micro and nano scale objects such as blood 

cells, pathological cells such as cancer cells, tissue cells, virus, bacteria, etc. [171]. Gaobao 

liang et al. presented a study on successful combination of CNN with recursive neural 

network (RNN) for blood cell classification [172]. Therefore, it is identified that 

combining different AI techniques for blood cell analysis also demonstrate high potential 

in future. 

Crnclusirn 

DIP based identification and classification is a top most utilized technology in computer 

vision and is used for a wide range of biomedical applications. Identification of 

individual cells and counting the number of cells in a photomicrograph are the directions 

studied towards blood cell sensing and have produced promising results. At present, 

photomicrography based blood cell observation is studied towards single cell analysis 

such as in image flow cytometry and also multiple cell analysis as the vision based 

approach provides the ability to extract and analyze a number of features of cells such as 

the cell size, shape, constituents, deformations, etc.. Image acquisition, image 

enhancement, image segmentation, feature extraction and classification are the key areas 

in applying DIP to blood testing. Challenges in photomicrographs based blood testing 

are approached by recent developments in computer science, microfluidics and 

sophisticated mechanical systems. Automated and semi-automated equipment and 

systems are also proposed to enhance the efficiency, productivity, and accuracy of the 

blood testing procedures. Microfluidic imaging flow cytometry and AI based classifiers 

are examples for such novel multidisciplinary directions proposed in literature. In 

addition, literature discusses the specific advantages integrating computer vision in 
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testing blood samples such as remote monitoring, keeping a digital track of medical 

information, reusability, non-destructive nature of the techniques, and application of 

adaptive algorithms for decision support which enables multiple future directions for the 

research. 
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