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Abstract  

Bearings are a common component and crucial to most rotating machinery. Their failures are the causes for more than 

half of the total machine failures, each with the potential to cause extreme damage, injury, and downtime. Therefore, 

fault detection through condition monitoring has significant importance. Since the initial cost of standard condition 

monitoring techniques such as vibration signature analysis is high and has a long payback period, condition 

monitoring via audio signal processing is proposed for both localized faults and distributed/ generalized roughness 

faults in the rolling bearing. It is not appropriate to analyze bearing faults using Fast Fourier Transform (FFT) of the 

noise signal of bearing since localized faults are Amplitude Modulated (AM) and mixed up with background noises. 

Localized faults are processed using the Kurstogram technique for finding the appropriate filtering band because 

localized faulty bearings produce impulsive signals. The filtered signal in the band derived by the Kurstogram 

technique is then transformed into the analytical signal of Hilbert transform to demodulate the AM faulty signal. Since 

carrier frequencies of the AM bearing noise signal are eliminated by Hilbert transform, FFT of the analytical signal of 

Hilbert transform gives the fault frequencies like misalignment frequency, Ball Pass Frequency Inner race (BPFI) and 

Ball Pass Frequency Outer race (BPFO) to find out the location of localized faults. Misalignment experiments for 

different types of bearings at different speeds and related fault frequencies are identified. Artificial Neural Network 

(ANN) and Convolutional Neural Network (CNN) are trained using the Mel Frequency Cepstral Coefficient (MFCC) 

feature of bearing noise signals with various background noises to distinguish between healthy bearing and bearing 

having distributed /generalized roughness faults. The ANN and CNN models can classify healthy or 

distributed/generalized roughness faulty bearing with validation accuracy of more than 90%.  

 

Keywords: Audio processing, fault diagnosis, Hilbert transform, machine learning, Kurstogram 

 

Introduction 

Bearings play an important key role that may affect the operation, reliability, and efficiency of rotating 

machinery. As it has been reported in the literature, bearings have finite life that is limited by their 

resistance to fatigue, thus, the occurrence of faults is inherent to its operation, even under ideal operating 

conditions [1][2]. In this sense, most of the common faults in bearing may be attributed to the following 

causes such as overload which may be generated by static load and/or unbalances or misalignments, 

excessive or insufficient lubrication, external contamination, inappropriate installation and/or design, and 

electrical discharges passing through the bearing [3][4]. Bearing is the most used and frequently failing 

component in the industry. Since bearing failure may lead to a fatal accident and costly downtime, 

condition monitoring and fault diagnosis of the bearing are significantly important [5].  In the past several 
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decades, many techniques have been investigated to diagnose bearing faults. Several of the commonly used 

methods include motor current signature analysis [6], vibration monitoring [7], [8], temperature 

measurement [9], and acoustic emission measurement [10]. Even though most of the abovementioned 

methods promise accurate results it costs a lot so intermediate industries cannot afford them for non-critical 

and less expensive applications as the cost of installing that standard diagnostic system might be greater 

than the cost of the monitored element itself. 

Recently, acoustic analysis has attracted more and more attention and it has been applied in many fields, 

for example, speech recognition, nevertheless still very rarely it is applied in the industrial environment for 

condition monitoring purposes [11][12]. Therefore, audio signal analysis via a low-cost microphone and 

smartphone is to be analyzed for condition monitoring of the bearing. In the literature, analysis of condition 

monitoring done by audio is negligible compared to the standard method based on vibration signature, 

acoustic emission, and voltage measurement.  

Even though there are many challenges with audio for fault diagnosis [13], some studies have proven that 

audio signal has the potential to diagnose faults in mechanical components. In [14-17], faults in moving 

mechanical components like drill and coffee grinder, three-phase induction motor, railway point machines, 

and spindle were diagnosed using audio signal processing with the help of machine learning techniques, 

which gave reasonable accurate results. In [18], it was found that sound signal has the potential to 

differentiate types of faults in DC motor using statistical quantitative measures of time and frequency 

domain signal.  

The rolling bearing faults can be divided into two groups, localized faults and distributed and/or 

generalized roughness faults. Localized faults produce simple patterns in any domain of measure. 

Conversely, patterns excited by distributed and generalized roughness faults tend to be more complex [19]. 

Even though there is more work that diagnosis bearing using vibration measurement with the use of 

machine learning models to classify the type of localized faults [20-22], there are some works where 

localized faults such as inner race faults, outer race faults, and ball faults were classified by machine 

learning technique using features extracted from the audio signal. In [23], localized faults were classified 

using both audio and vibration signals. It is interesting to note that the classification accuracy of roller 

element bearing is higher when using the microphone of the smartphone than using a low-cost 

accelerometer since different speeds were used to train the machine learning model. In [24], bearing fault 

was diagnosed using combined audio and current measurement to diagnose localized faults at a different 

speed.   

Some works measure the single pitting localized faults quantitatively using vibration analysis [25-28]. No 

study was found for the audio signal to quantitatively measure the single pitting localized faults since the 

audio signal has a low signal-to-noise ratio. As all the above-mentioned works were done based on the data 

acquired at the laboratory, the accuracy of the results is acceptable. Coming into reality, the industry is a 

noisy environment and noise is changing over time. Since there was no filtering before classification, it is 

doubtful when using it in the industry because the useful signal may be mixed up with various background 

noises, which may lead to misclassification.  

Conventionally, distributed, and generalized roughness bearing faults could be identified by comparing 

statistical measurements or energy at a specific band of vibration, current, or voltage measurement with a 
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predefined threshold [19, 29-30]. But these methods do not help with audio signal because of the low signal-

to-noise ratio of audio. But some works classifies distributed and generalized roughness bearing faults 

using audio signal recorded in a less noisy environment. In [31], fault diagnosis of bearing using a 

descriptive statistical feature of sound and classification using Bayes classifier has been done with 

reasonable accuracy. In [32], the Support Vector Machine (SVM) classifier was trained using features 

extracted from the Fast Fourier Transform (FFT) of the sound signal, and the remaining useful life could be 

found. In [33], database-based fault diagnosis using spectral features have been done for the wheel bearing 

of an automobile. All those methods are not reliable when distributed fault diagnosing using audio because 

the noise varying in the industry is the hurdle. Therefore, the model which considers background noises 

should be there to be robust to handle varying noises. Although several works have been proposed to 

perform bearing fault detection and diagnosis, some gaps still exist that have not been addressed in the 

field of bearing fault assessment. Fault diagnosis of bearing using noise signal of that bearing is to be 

analyzed to detect both localized and distributed/generalized roughness faults. Considering localized 

faults, the noise of bearing is to be analyzed by a systematic method that is used for vibration analysis for 

the detection of localized faults such as inner race, outer race, ball, and misalignment faults. Coming into 

distributed/generalized roughness faults, conventional machine learning methods are not suitable when 

using audio as feature selection is hard and questionable. Therefore, deep learning techniques such as 

Artificial Neural Network (ANN), and Convolutional Neural Network (CNN) are to be evaluated to 

classify as healthy or faulty bearings using the noise signal of the rolling bearing.  

Since localized faults are usually single pitting crake in the outer race, inner race, rolling elements, and cage 

or as well as the misalignment, the occurrence of any of these faults produce a characteristic pattern that 

can be associated with a specific frequency component. Hence, to assess the localized faults in the bearings, 

it is mandatory to know fault-related frequency components that are produced by the sudden occurrence 

of bearing faults [34]. And so, the mathematical equations to identify defects in the outer race and inner 

race of bearings are related to the fault-related frequency given by Equations (1) and (2), respectively and 

the frequency related to misalignment is stated as Equation (3). With the calculation of the BPFO (Ball Pass 

Frequency of the Outer race), BPFI (Ball Pass Frequency of the Inner race), and misalignment components, 

it is possible to locate the fault-related frequency components in the frequency spectrum and determine the 

presence of bearing faults on the outer race and inner race as well as the misalignment. It should be noted 

that these fault-related frequency components are computed in terms of the number of rolling elements 

(balls), N; the ball diameter, BD; the pitch diameter, PD; the contact angle, θ; and the rotational frequency, 

f, [35]. 

 

                          𝐵𝑃𝐹𝑂 =
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          Since localized faults produce amplitude modulated signal at any measurement like vibration 

motor current or noise of bearing as shown in Figure 1, it would not produce an accurate result when 

extracting frequency components from draw signal.   

 

Therefore, the draw signal is to be demodulated before extracting fault frequencies as shown in Figure 2. 

There are noises everywhere. But the noises associated with the audio is higher compared to the other 

measurement such as vibration and motor current. Therefore, the audio signal should be filtered at the 

appropriate band before demodulating the signal.   

Distributed faults are regarded as bearing surface defects spread over a large area that occur due to 

imperfect manufacturing, faulty mounting, and misuse [36–39]. As the bearing ages, localized faults evolve 

and spread over a wider area, thus becoming distributed. Generalized Roughness is a type of fault when 

the condition of a bearing surface over a large area has considerably degraded and become rough, irregular, 

or deformed. Pollutant contaminated oil, shortage of oil, shaft currents, and system misalignment are major 

causes of Generalized Roughness failure.  Generalized Roughness and distributed faults are more common 

failure types than Single points [40]. Since distributed / generalized roughness faults produce a complex 

and arbitrary signal at any measure it increases the challenge of diagnosing distributed / generalized 

roughness faults in a rolling bearing using the noise signal of the bearing since audio usually has a low 

signal-to-noise ratio because of its ease of mixing exposure to other external background noises. MFCC 

features are widely used in many auditory applications such as voice recognition, speech emotion 

recognition, acoustic event monitoring since MFCC features represent approximated human auditory 

system [41]. The MFCC feature extraction technique includes windowing the signal, applying the Discrete 

Fourier Transform (DFT), taking the log of the magnitude, and then warping the frequencies on a Mel scale, 

followed by applying the inverse Discrete Cosine Transform (DCT). Therefore, deep learning techniques 

such as ANN and CNN trained using the MFCC feature are evaluated to distinguish between healthy 

bearing and bearing having distributed/ generalized roughness faults.  

 

Methods for Diagnosing Localized and Distributed/ Generalized Roughness Faults  

In this study, the potential of bearing noise signals to diagnose both localized and distributed/generalized 

roughness faults have been analyzed. Since each fault must be analyzed using different methods, the 

methods for each fault type have been described under subheadings.  

 

Figure 2.  Demodulated signal of 

localized fault 
Figure 1. Amplitude modulated signal 

of localized fault 
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Localized Faults                 

Figure 3 shows the proposed method for diagnosing localized faults in rolling bearing using the noise 

signal of the bearing. The audio is filtered through the filtering band derived by the Kurstogram because 

spectral kurtosis is higher for impulsive signals and zero for white noises since localized faults are 

impulsive.  

 
Figure 3. Method for localized faults 

 

Since the localized faults are amplitude modulated, Kurstogram is used to find out the carrier frequency 

band of AM fault signal. Then, the analytical signal of Hilbert transform of the filtered signal is derived to 

get envelop of fault signal. Since localized faults are AM the FFT of the envelope signal gives the fault 

frequencies of the rolling bearing. The filtering process expects not only the isolation of the impulsive 

bearing noise signal but also the elimination of other background noises. Moreover, the effect of enveloping 

the filtered signal also aids to eliminate background noises with high frequency and low amplitude.  

 

Distributed / Generalized Roughness Faults 

                 

Figure 4 shows the proposed method to diagnose distributed / generalized roughness faults. Mel Frequency 

Cepstral Coefficient (MFCC) feature of bearing noise of distributed/ generalized roughness faulty bearing 

and healthy bearing are used to train the ANN and CNN. Audio samples with and without industrial 

background noises are used to train the model to generalize the model to be robust for unseen background 

noises.  

 

Figure 4. Method for distributed/ generalized roughness faults 
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Experimental Setup 

 

The dataset of bearing noises was obtained by a custom-made experimental setup as shown in Figure 5. 

There, a 0.5Hp motor was used to turn the bearing at different speeds. The experimental setup allowed to 

take readings from different types of bearings. Deep groove ball bearing (6205E) and needle roller bearing 

(25 38 15 CS) were turned at 1420 RPM and 1445 RPM and the bearing noise signals were recorded by 

“Ipad-7th gen” at about 10cm distance from bearing for a duration of each of the 60s at 22050 Hz sampling 

frequency. Here microphone of the iPad is selected rather than a commercial one to be a low-cost solution. 

However, characteristics of the iPad’s microphone such as the omnidirectional, short range of frequency 

response, unflatten frequency response, and sensitivity would be the limitation [42]. The speed of the motor 

was measured by a DM6236 digital tachometer.  

 

Results and Discussion  

Some analyzed bearings are named as follows for ease of explanation.  

• Bearing-1: Healthy deep groove ball bearing  

• Bearing-2: Generalized roughness faulty deep groove ball bearing 

• Bearing-3: Generalized roughness faulty deep groove ball bearing  

• Bearing-4: Generalized roughness faulty needle roller bearing   

The noise signals from healthy and faulty deep groove ball bearings (25 38 15 CS) turned by the 

experimental setup discussed in section 3 were analyzed using FFT. As shown in Figure 6,7,8, healthy and 

faulty bearings could be distinguished when there is no external noise in the field. Coming into the point, 

when the bearing is diagnosed in the industry, there is always different kind of noises. It was not possible 

to observe any fault-specific frequency component because important information related to the state of 

the bearing noise signal is mixed up with background noises. Therefore, the proposed methods for both 

localized faults and distributed/ generalized roughness faults have been analyzed as follows.  

Figure 5. Experimental setup of frequency monitoring  
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Localized Fault 

The noises of the bearing were recorded each for the 60s by the experimental setup as discussed in section 

3 and its processing as stated in section 2.1 is carried out by MATLAB, which is a dedicated software used 

in many engineering applications.  

 

The Same Type of Different Bearing 

The misalignment was adjusted in the experimental setup to get the effect of misalignment in the deep 

groove ball bearing. The bearing noise signals were recorded when two same types of bearings were turned 

at 1400 RPM and 1420 RPM with misalignment. Figure 9 shows the Kurstogram of bearing-2 turning at 

1400 RPM and the filtering band is derived by the Kurstogram of that bearing-2 as the center frequency of 

10.34 kHz and bandwidth of 1.38 kHz. The bearing noise signals of bearing-2 and bearing-3 were filtered 

by the same filtering band derived from the Kurstogram of the noise signal of bearing-2. Even though the 

filtering band is defined by the Kurstogram of the noise signal of bearing-2, it was possible to get the 

expected frequency hike representing misalignment not only for the noise signal of bearing-2 (1400 RPM 

/60 = 23.33 Hz) but also for noise signal of bearing-3 (1420 RPM /60 = 23.66 Hz) using filtering band defined 

by Kurstogram of noise signal of bearing-2 since bearing-2 and bearing-3 are the same types. Therefore, if 

a filtering band is known for a specific type of bearing it can be used to diagnose any same type of bearing 

using this proposed method.  

 

Bearing at Different Speeds  

The misalignment was adjusted in the experimental setup to get the effect of misalignment in the needle 

bearing. Figure 12 shows the Kurstogram of the noise of needle bearing turning at 1445 RPM and the 

filtering band is derived by the Kurstogram of that needle bearing as the center frequency of 16.14 kHz and 

Figure 8. FFT of faulty bearing-2 

noise signal with industrial 

background noise signal 

Figure 9. Kurstogram of noise of 

bearing-2 @ 1400RPM 
Figure 11. FFT of envelop of 

bearing-3 @1420 

 

Figure 10. FFT of envelop of 

bearing-2 @ 1400RPM 

Figure 7. FFT of Faulty bearing-2 

noise signal 

Figure 6. FFT of healthy bearing-1 

noise signal 
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bandwidth of 114.84 Hz. The bearing noise signals of bearing turning at 1445 RPM and 1420 RPM were 

filtered by the same filtering band derived from the Kurstogram of noise signal of bearing turning at 1445 

RPM. Even though the filtering band is defined by the Kurstogram of the noise signal of bearing turning at 

1445 RPM it was possible to get the expected frequency hike representing misalignment not only for the 

noise signal of bearing turning at 1445 RPM (1445 RPM /60 = 24 Hz) but also for noise signal of bearing 

turning at 1420 RPM (1420 RPM /60 = 23.66 Hz) using filtering band defined by Kurstogram of noise signal 

of bearing turning at 1445 RPM. Therefore, if the filtering band is known for a bearing at any RPM it can 

be used to diagnose bearing turning at any speed using this proposed method.  

 

 

Distributed / Generalized Roughness Fault 

The MFCC feature of faulty bearing noises with and without different industrial background noises was 

extracted and the extracted MFCC are shown in figures 15, 16, 17. Thirteen coefficients were extracted using 

the window length of 2048 and hop length of 512.  

These results show that it is not possible to observe and grab the information on whether the bearing has 

distributed /generalized roughness fault because of the background noises. Therefore, ANN and CNN are 

trained using the MFCCs extracted from the bearing having distributed /generalized roughness fault and 

healthy bearing. ANN and CNN were trained using both pure bearing noise signals and bearing noise 

signals mixed up with various industrial background noises such as tire manufacturing, lathe machine 

operation, arc welding, and milling machine operation. Table 1 shows the dataset used to train the ANN 

and CNN. 

Figure 15. MFCC of noise of faulty 

bearing-2 
Figure 16.  MFCC of noise of bearing-2 

with industrial background noise type-

1 

Figure 17.  MFCC of noise of bearing-2 

with industrial background noise 

type-2 

Figure 12. Kurstogram of bearing-4 

@ 1445RPM 
Figure 13. FFT of envelop of 

bearing-4 @ 1445RPM 

Figure 14. FFT of envelop of 

bearing-4 @ 1420RPM 
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Table 1. Dataset for distributed/ generalized roughness fault 

Bearing  type  Number of bearing  Duration (s) Number of segments  

Healthy deep groove 

ball bearing  

2 60 30 

Faulty deep groove ball 

bearing  

2 60 30 

Healthy needle bearing 2 60 30 

Faulty needle bearing  2 60 30 

 

The bearing noise signals recorded for 60 s were segmented into 30 segments to increase the number of 

samples. The ANN was implemented as in table 2 and ANN was trained using Adam optimizers with a 0.2 

learning rate.  

Table 2.  Parameters of ANN 

Layer  Number of neurons  Activation function 

Flatten layer (input) 1118 (86 x 13) Relu 

Dense layer (hidden) 512 Relu 

Dense layer (hidden) 256 Relu 

Dense layer (hidden) 64 Relu 

Dense layer (output) 2 Softmax 

 

The dataset was divided into training and validation at the ratio of 6:4. Figure 18 shows the training and 

validation accuracy of the ANN with epochs. More than 90 % of validation accuracy was got after ten 

epochs when using ANN.  

 

Table 3. Parameters of CNN 

Layer type Number of kernel / 

neurons  

 Pooling  Activation function 

Conv2D 32 kernel Maxpooling2D Relu  

Conv2D 32 kernel Maxpooling2D Relu  

Conv2D 32 kernel Maxpooling2D Relu  

Flatten and Dense  64 neurons - Relu  

Dense  2 neurons  - Softmax  

 

Table 3 shows the implemented model’s parameters of the CNN. The CNN also trained using the same 

dataset divided into training and validation as the ratio of 6:4. Figure 19 shows the training and validation 

error and accuracy of trained CNN and more than 90 % of validation accuracy was got after ten epochs.  

The results of this study are enough to be comparable with other studies based on the standard methods 

such as vibration, acoustic emission, given that the experimental conditions are different. In [20] [21] [22], 

localized faults are classified based on the vibration measurement using machine learning algorithms 

sequentially using CNN with 98.6 %, DS evidence theory-based fusion model with 94 %, and SVM with 
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81 %. There is a study that classifies the degree of distributed faults such as lightly damaged, heavily 

damaged, and healthy bearing based on acoustic emission, vibration, stator current signals, and high-

frequency bearings pulses, and an average of 93.33 % accuracy could be obtained [43].  In this study, more 

than 90 % accuracy was obtained. Therefore, it is possible to classify healthy or faulty bearing based on the 

noise signal of the bearing with confidence comparability with standard techniques. 

Even though the proposed method for fault diagnosis of rolling bearing using bearing’s noise signal has 

many advantages such as non-contacts to the machine, easy to install, and low cost, this method has a major 

weakness in that they can be mixed up with background noise easily which has a significant effect on the 

accuracy.  Some methods can lessen the effect of background noise, like noise dampening enclosures [13]. 

The low-cost microphone with low sensitivity is not able to detect minor acoustic signals from bearings 

due to the lubrication layer and the clearance between the rolling element and inner and outer races. It 

would be great if vibration measurement via a low-cost vibration sensor and the bearing’s noise signal is 

fused to diagnose bearing faults in future work. It is recommended to experiment and analyze the 

feasibility of the bearing’s noise signal to diagnose other localized fault types such as inner race fault, outer 

race fault, and rolling element fault.  

 

 

Conclusion 

Fault diagnosis of the rolling bearing by noise signal of the bearing is evaluated. Localized faults especially 

misalignment was diagnosed using envelop spectral analysis and it yields expected frequency hikes 

representing misalignment. Kurstogram is used to find the appropriate filtering band and the Hilbert 

transform is used to extract envelop of the filtered noise signal. It could be observed that the MFFC feature 

of the bearing noise signal is not enough to distinguish between healthy bearing and faulty bearing by just 

observing the MFCC feature of the bearing noise signal. Bearing with distributed / generalized roughness 

faults and healthy bearing are distinguished by ANN and CNN using the MFCC features of noise signal of 

the bearing with and without various industrial background noises and the validation accuracy was 

obtained at more than 90% for both ANN and CNN. 
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Figure 18 . Accuracy of ANN Figure 19.  Accuracy and error of CNN 
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