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Abstract 

 

Routine medical Ultrasound (US) scans are recommended for expectant mothers to monitor the health and growth of 

the fetus. However, expectant mothers in rural areas of developing and underdeveloped countries face difficulties in 

receiving timely scans due to a lack of expertise and facilities. Consequently, maternal and fetal deaths occur at higher 

rates in these countries, especially in the first trimester. Novel concepts such as Virtual Doctors, Hospital to Home, self-

scans and the Internet of Medical Things (IoMT) may address the aforementioned problem effectively. Therefore, 

computational-efficient algorithms which support low-end smart devices should be introduced to assist expectant 

mothers in rural areas to provide comfortable and timely fetal scans. In light of the above, this paper discusses 

computationally efficient YOLO V5_s for fetal detection in first-trimester ultrasound images using a highly diverse 

dataset including abnormal and multiple pregnancies. The implemented model was compared with five benchmark 

detection models, namely, ResNet-50 and MobileNet-based faster R-CNN, YOLO-n, YOLO-m and YOLO-l. YOLO was 

comparatively better than faster R-CNN. Even though YOLO-n is the most computationally inexpensive model, its 

mAP is 0.709, which is comparatively low, hence cannot be applied to the clinical set-up. YOLO-l model has the best 

performance with F-1 score and mAP of 0.978 and 0.751, respectively. However, YOLO-s has also achieved a F-1 score 

of 0.979 with a mAP 0.734.  Therefore, a subjective test was conducted to verify using YOLO-s in the clinical set-up with 

five experts in the field with more than five years of experience. The subjective analysis test, assessed through Fleiss 

Kappa, suggests substantial agreement beyond chance (κ = 0.69), while the Intraclass Correlation Coefficient (ICC) 

indicates modest reliability (ICC = 0.7). The findings endorse the application of YOLO-s for real-time detection of whole 

fetuses in the first trimester with reduced computational complexity with further validation. 

 
Keywords: Faster R-CNN, fetal ultrasound, first trimester, remote monitoring, whole fetus, YOLO 

 
 

Introduction 

Routine fetal scans of the first trimester can be performed in the first three months of the pregnancy, starting 

from post-conception week 6 to week 14. Receiving scans in the first trimester is important to assess the 

viability of the pregnancy, diagnose potential risks of fetal anomalies and abnormalities, and monitor the 

development of the fetus [1]. Medical imaging modalities such as Ultrasound (US), Magnetic Resonance 

Imaging (MRI), X-ray, Computed Tomography (CT), Positron Emission Tomography (PET), and 

Endoscopy are one of the key diagnostic tools used in a large clinical scope, including oncology, 

gynaecology and osteology which are used to visualize the interior structures of the human body [2]. 
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Among these modalities, medical US is highly recommended in obstetrics to provide comfortable and risk-

free scans to expectant mothers as it is one of the safest imaging modalities due to its non-invasive and non-

ionizing nature. Medical US images are generated using the time of flight of the echo pulses. Hence, it is 

the safest medical imaging modality to date. Further, it provides benefits such as a real-time monitoring 

facility, lower cost, and the possibility to conduct without a pre-preparation [3-5]. However, the majority 

of the expectant mothers in underdeveloped and developing countries do not have facilities and expertise 

to timely receive routine fetal US scans. Unfortunately, 99% of maternal and fetal deaths are reported in 

these countries as expectant mothers are unable to reach expertise or good resource settings promptly [6]. 

 

The difficulties faced by expectant mothers due to geometric barriers can be addressed through the 

transmission of medical Ultrasound (US) images to provide remote monitoring [7, 8]. Further, remote 

monitoring facilitates comfortable, time and cost-efficient scanning for mothers. Automated fetal US scans 

enable novel biomedical engineering concepts such as “Virtual Doctor” [9, 10], “Hospital-to-Home Care 

(H2H care)”, and “Internet of Medical Things” (IoMT) [7, 8]. Further, self-scanning is encouraged recently 

in which automated medical evaluations of the expectant mother and the fetus are required [11]. The novel 

biomedical engineering approaches facilitate comfortable, time and cost-efficient scans for the mother with 

minimum risk of travelling and exposure to crowded medical centres. In addition, the limitations of 

conventional manual fetal US scans also can be minimized by using an automated computerized system. 

 

Comprehensively, during a conventional routine manual fetal US scan, the transducer probe is moved on 

the abdomen to manually capture imaging planes containing the fetus from different angles and depths 

[12-14]. The standard fetal scanning planes are known to be imaging planes containing clinically important 

fetal anatomical structures, including the whole fetus, head, femur, abdomen, and heart [15, 16]. A few of 

these anatomical structures are shown in Figure 1.  Approximately twenty standard planes can be 

monitored during a fetal US scan, and each plane contains distinct anatomical structures [13-15, 

17][13,14,15,17]. After capturing a standard plane, it is frozen, and the caliper is placed on specific points 

of the fetus manually to calculate biometric parameters such as Head Circumference (HC), Femur Length 

(FL), Crown Rump Length (CRL), and Abdominal Circumference (AC) using standard charts [18-21]. The 

biometric parameters provide important clinical information, including Gestational Age (GA), size, and 

weight of the fetus [22, 23].  In addition, the anatomy of the fetal heart, liver, kidney, spine, urinary bladder, 

and genitalia can be observed during a fetal US scan [15, 16]. Even the functionality of the fetal organs can 

be visualized [12]. Apart from the aforementioned information, fetal biometric parameters provide 

information regarding the abnormalities of the fetus, and unhealthy anatomical and physiological maternal 

changes [24-26]. Therefore, the assessment of the fetus and maternal health directly depend on the 

operator's expertise.  

 

However, conventional manual scans may be subject to fatigue errors, systematic errors, and observer 

variabilities. These scans may be subject to fatigue errors due to the tedious process [17]. In addition, strain 

injuries due to the repetitive movement of the hand in handling the transducer and caliper placement are 

common among obstetricians [27, 28]. Manual scanning is a subjective process, hence tends to suffer from 

observer variabilities. The accuracy of the standard plane detection [13] and the caliper placement [19] is 
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highly dependent on expertise. Capturing the standard planes and placing the caliper requires high-level 

skills, domain knowledge, and experience [13, 19, 25, 29]. As a result, significant attention has been directed 

towards the advancement and implementation of automated routine fetal ultrasound scans [17]. The 

automated process is a repeatable computerised system that avoids fatigue errors. Moreover, the risk of 

strain injuries can be avoided by reducing the workload of obstetricians [2]. 

                    

 

 

Automated fetal US scan consists of four main stages: pre-processing, fetus detection and segmentation, 

compression, and biometric parameter-based health evaluation. This process is illustrated in Figure 2. In 

the first stage, images are pre-processed using techniques such as de-noising and contrast-enhancing to 

ensure the smooth flow of the subsequent stages. In the second stage, fetal US image segmentation follows 

fetus detection. Depending on the requirement, either compression or biometric-parameter measurements 

evaluation is conducted. Compression is performed to achieve higher efficiency in image transmission for 

remote monitoring. The step, “fetus detection and segmentation” is a key stage that directly contributes to 

the efficiency and reliability of the automated process.  

 

Region-of-Interest (ROI) is the clinically important area in a medical image. In fetal US images, ROI contains 

fetus/es. During a routine fetal US scan, ROI is observed and analyzed to monitor the growth of the fetus. 

In addition, health problems such as aneuploidies and abnormalities related to the fetus, or the mother can 

be diagnosed through routine scans [30]. Hence, detection and segmentation of the ROI are required to 

improve the accuracy and reliability of automated scans and improve the efficiency of the process.  

Figure 1. Commonly captured fetal anatomical structures during US scans; a. head, b. femur, c. abdomen, d. whole fetus 
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Fetal US image segmentation facilitates efficient transmission via compression. Figure 1, d) illustrates an 

example of a whole fetus in a fetal US image in the mid-sagittal plane. Crown Rump Length (CRL) and 

Nuchal Translucency (NT), which can be measured using the mid-sagittal plane of the whole fetus, are 

vital biometric parameters measured in the first trimester. The CRL, which is shown in Figure 3, is the 

distance between the fetal head (crown) and the buttock. CRL is used to estimate the gestational age of the 

fetus. Moreover, the cardiac activity of the fetus should be present when CRL is greater than 7 mm 

according to current guidelines of the Society of Radiologists in Ultrasound (SRU) [31]. NT, which is 

illustrated in Figure 4, is the subcutaneous fluid accumulated behind the fetal neck. NT is an indication of 

fetal aneuploidy, cardiac abnormalities, and structural defects [32]. 

 

Nevertheless, the implementation of automated segmentation of fetal US images faces several challenges. 

Fetal US images are susceptible to suffering from various types of distortions [33]. Distortions pose a 

significant challenge in fetal US image segmentation and fetus detection [34-36]. Moreover, blurry edges 

and low contrast between the fetal and maternal tissues challenge automated fetus detection and 

segmentation [37]. Further, arbitrary shapes of the fetus and the similarity of the fetus to the nearby tissues 

are challenging [22, 35]. Further, the small size of the fetus is challenging, especially in the first trimester 

[38]. In addition, differences may appear in the images due to maternal structures, even when the images 

are captured from the fetuses in the same GA in the same standard plane. For example, US signals are 

highly attenuated when the maternal mass increases [39]. Moreover, maternal respiration may cause image 

differences [40]. Special cases such as twins and triplets pose a challenge in automated fetal US image 

segmentation. In addition, unhealthy fetuses may appear with differences in the anatomical structures 

compared to healthy fetuses, consequently causing differences in the fetal US images. Figure 5 illustrates 

examples for blurry edges and speckle noise in fetal US images. 

 

Recent literature extensively explores deep learning for medical image processing, including segmentation 

and fetus detection applications, as it provides comparatively higher accuracy and reliable outputs in 

clinical diagnoses and therapy [30, 41, 42]. The visual perception-based training and advanced pattern 

recognition capabilities of deep learning algorithms cater to working with the distorted nature of fetal US 

images and arbitrary complex shapes that appear in the images. Fetal US images tend to suffer from speckle 

noise, acoustic shadows, different intensity distributions, and blurry edges [43].  Hence, the conventional 

image segmentation and fetus detection algorithms do not precisely work on fetal US images. Moreover, 

depending on the position and the location of the fetus, maternal tissues, pressure applied on the mother’s 

Figure 2. The process of automated fetal ultrasound scanning 
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abdomen by the transducer probe, and motion artifacts due to maternal breathing and fetal movements 

may produce arbitrary shapes in the fetal US images [44]. Other advantages of deep learning algorithms 

are that these architectures do not require pre-defined parameters to initiate the process and have minimal 

human intervention requirements. 

 

 

 

 
Figure 5. Challenges in fetal detection in US images: a: blurry edges, b: highly distorted nature 

 

Fiorentino et al., (2023) presented a review on fetal US image analysis using deep learning [45]. Komatsu 

et al. (2021) proposed an algorithm to detect cardiac structures in three-vessel trachea view and four-

chamber heart view of fetal US videos using Supervised Object detection with Normal data Only (SONO) 

[46]. This algorithm was developed based on the Convolution Neural Network (CNN). Zhang et al., (2021) 

proposed a Feature Pyramid Network-based faster-CNN algorithm to detect the fetal heart, head, and 

abdomen [47]. Al-Battal et al., (2021)] proposed an optical flow CNN to track the objects in medical US 

videos in real-time [48]. Nurmaini et al., (2021) also analyzed the performance of RPN-based CNN in the 

detection of structures of the fetal heart [49]. Teodor et al., (2022) analyzed the performance of YOLOV3 in 

detecting gestational sac, yolk sac, and embryo in week 6 - week 10 US images [40]. Sinclair et al., (2018) 

introduced a robust real-time algorithm to measure HC and BPD from a standard trans-ventricular (TV) 

  

Crown 

Buttock 

   

Figure 3. Crown-Rump Length (CRL) of the fetus Figure 4. Nuchal Translucency (NT) of the Fetus [43] 
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brain view plane using FCN-16 using 1948, 539, 216 images for training, testing, and validating respectively. 

Moreover, an observer variability study was conducted using 100 random test images with two experts: an 

engineer and a sonographer. A similar architecture named Cascaded FCN (CasFCN) was presented by Wu 

et al., (2017). This algorithm is an improved version of FCN-8 and achieved better results than basic 

Convolution Neural Networks, FCN-8, and U-Net [50]. Sundarasan et al., (2017) evaluated the performance 

of FCN-8, FCN-16, and FCN-32 in detecting three common fetal heart standard planes [51]. FCN-16 was 

comparatively accurate among the three models, with a low localization error and a minimum classification 

error. Skeika et al., (2020) evaluated the performance of a modified algorithm developed upon FCN and V-

Net (VNet-C) using 297 grayscale 2D US images. This algorithm produced promising results compared to 

three state-of-the-art approaches presented by van den Heuvel et al., (2018) and Sobhaninia et al., in 2020 

and 2019 [11,30]. Sobhaninia et al., (2019) presented an end-to-end Multi-Task Network based on Link-net 

architecture (MLTN). Sobhaninia et al., (2020) proposed a multi-scale Mini-LinkNet encoder-decoder 

architecture to address the limitations of conventional LinkNet namely, low accuracy in distorted images, 

a large number of training parameters, time in-efficiency, and loss of spatial information. Ryou et al., (2019) 

introduced the FCN-based algorithm for standard plane detection and semantic segmentation of the 3D 

fetal US volumes in the first trimester [52].  Szentimrey et al., (2022)  proposed an algorithm using shape 

prior-based U-net to segment 3D neonatal cerebral ventricles US image segmentation [53]. This algorithm 

was comparatively accurate and time-efficient compared to 2D multiplane U-Net and 2D SegNet 

architecture.   

 

This paper delves into the utilization of YOLO-s in a clinical setting to detect the whole fetus during the 

first trimester. The remainder of this paper is structured as follows: The second section, 'Materials and 

Methods,' provides a comprehensive description of the materials and methods followed. The third section 

presents the results obtained and a critical analysis of these findings. Lastly, the 'Conclusion' section offers 

recommendations based on the outcomes. 

 

Materials and Methods 

 

In this section, materials and methods employed in the study are extensively described. The experiments 

were conducted using publicly available 2D fetal US images, specifically, the whole fetus within the mid-

sagittal plane during the first trimester. Data augmentation techniques and transfer learning were utilized 

to enhance the model's robustness. Our primary approach, YOLO-s, was implemented and benchmarked 

against additional models including YOLO-n, YOLO-m, YOLO-l, MobileNet, and ResNet. Additionally, we 

conducted a Likert-based subjective analysis to assess the performance and usability of the proposed model 

to provide valuable insights into its practical clinical applicability. The rest of the section extensively 

describes the materials and methods used for the experiment under the subsections, Dataset, Data 

Augmentation, Data Annotation, Transfer Learning, Implementation of Deep Learning Models, Evaluation 

Parameters and Statistical Analysis of Subjective Data. 
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Dataset 

 

The majority of the investigations conducted to detect fetuses in US images focus on anatomical structures 

such as the head, femur, heart, and abdomen in the second and third trimesters. However, Crown Rump 

Length (CRL), which is the distance between the crown and the buttock of the fetus, is the main biometric 

parameter measured in the first trimester. This paper explores the detection of the whole fetus in 2D 

ultrasound images captured in the mid-sagittal plane during the first trimester. The dataset used for the 

experiment is small yet highly diverse. Publicly available 171 images which carry the fetus within week 6 

to week 12 were included into the data set. These images were captured using various US machines by 

different experts. The original images were resized using zero padding, and the image size was set to 512 

x 512. Image size 512 x 512 supports the implementation of deep learning algorithms, and it is a compatible 

resolution to view images in smart devices. The image dataset was initially categorized into three normal 

fetuses, special cases and null, as per the examples shown in Figure 6. The category “normal fetuses” 

contained healthy fetuses. “Special cases” contained the images of twins and unhealthy fetuses. “Null” 

image dataset category carried the images of non-pregnant US scans in the mid-sagittal plane. Data 

distribution among three categories is shown in Figure 7.  

     

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Initial categories of the dataset: Category 1: Normal fetuses, Category 2: Special cases, Category 3: Null 

 

 

 

 

 

 

 

 

 

 

 

The dataset was randomly divided into 70%, 20% and 10% for training, validating, and testing respectively  

 

 

 

Figure 7.  Data distribution among the three categories 
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The dataset was randomly divided into 70%, 20% and 10% for training, validating, and testing respectively 

using random uniform distribution as given in Table 1. 

 

Table 1. Random distribution of data into training, validating, and testing 

Category Number of Images Percentage (%) 

Training 126 70 

Validating 41 20 

Testing 22 10 

 

Data Augmentation 

 

Data augmentation was performed as a solution to the difficulty in collecting sufficient data to train a 

learning architecture. 8 images were generated from 1 image using data augmentation. Basic data 

augmentation methods, including rotation, RGB shift, downscale, compression, horizontal flip, intensity 

jitter and blur, were used. In addition, random speckle noise was added as it is a common type of distortion 

in US images. Data augmentation improves network efficiency and prevents overfitting. Figure 8 presents 

a few examples of the appearance of the image after performing augmentation. 

   

Data Annotation 

 

Data annotation was conducted manually by two experts: a senior radiologist with more than five years of 

experience and a Biomedical engineer. The “Roboflow” toolbox was used to label the images by marking 

the bounding box [54]. 

 

Transfer Learning 

 

Due to the difficulty in accessing a higher number of fetal US images in the first trimester, transfer learning 

was used to train the model. The pre-trained weights on COCO were used for this step. In addition, using 

transfer learning improved the time efficiency of the process. 

  

Figure 8. Examples for the appearance of augmentations in the images  
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Implementation of Detection Models 

 

Faster Region-based Convolutional Neural Network (Faster R-CNN) is an object detection algorithm 

rooted in deep learning. It focuses on enhancing the speed and accuracy of conventional R-CNN models. 

Faster R-CNN optimizes object detection by comprising two main components: the Region Proposal 

Network (RPN) and the detection network. The RPN employs a small network to generate region proposals 

by traversing the convolutional feature map. Subsequently, the detection network classifies these proposals 

and refines their bounding box coordinates. By sharing convolutional features and incorporating the RPN, 

Faster R-CNN enables end-to-end training and avoids the computationally expensive selective search used 

in previous methods, making it faster and more efficient for object detection tasks. 

 

ResNet-50 is a convolutional neural network architecture introduced by Microsoft Research. It consists of 

50 layers, including residual blocks that enable deep network training without encountering vanishing 

gradients. ResNet-50 employs skip connections, allowing the network to bypass certain layers and learn 

residual mappings. ResNet-50 has achieved notable performance in various computer vision tasks, 

showcasing its effectiveness in image classification, object detection, and semantic segmentation. 

 

MobileNet is the comparatively fastest architecture which has been developed to date. It is a lightweight 

deep neural network which originated from the VGG-16 base network. MobileNet is specifically designed 

for mobiles and embedded vision applications. Therefore, it works in limited resource setups, even onset-

ups, low-end smart devices. MobileNet performs depth-wise separable convolution to create a lightweight 

neural network. Consequently, it reduces the computational complexity compared to the networks based 

on regular convolution. MobileNet V3 and MobileNet V3-320 are variations of the same neural network 

architecture. However, they have differences in terms of input resolution. MobileNet V3 is a general 

architecture design that can work with various input resolutions. In contrast, MobileNet V3-320 is a specific 

variant of MobileNet V3 with an input resolution fixed at 320x320 pixels. The selection of input resolution 

affects the model's inference speed, accuracy, and memory requirements. Generally, lower resolutions like 

320x320 result in faster inference but may compromise fine-grained detail in the output. 

 

YOLO v5 is an object detection algorithm that builds upon the previous versions of YOLO (You Only Look 

Once). It offers versions; YOLO v5-n, YOLO v5-s, YOLO v5-m and YOLO v5-l. YOLO v5-n (small) has a 

smaller model size and fewer parameters, making it faster but with slightly lower accuracy. It is well-suited 

for real-time applications on devices with constrained computational resources.  

 

YOLO v5-n is smaller and faster than YOLO v5-s, yet it may compromise the accuracy. YOLO v5-m strikes 

a balance between speed and accuracy, providing a good trade-off between the two. It offers improved 

performance over YOLO v5-s while maintaining a manageable model size. YOLO v5-l is a larger model 

that achieves higher accuracy but at the cost of slower inference speed and increased memory usage. It is 

well-suited for scenarios where accuracy is of utmost importance. These variations allow users to choose 

the model that aligns with their needs, striking a balance between inference speed, model size, and 

detection accuracy. 
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Evaluation Parameters 

 

Several evaluation parameters are used for object detection. These parameters are closely related and 

include Intersection over Union (IoU), Precision, Recall, F-1 Score, and Mean Average Precision (mAP). The 

evaluation parameters used in this experiment are described below [55]. 

 

IoU is a metric that evaluates how much the ground truth overlaps the prediction given in Equation 1. IoU 

lies between 0 to 1 where 0 implies no overlap, and 1 implies complete overlap. To meaningfully integrate 

the metric IoU into detection, a threshold is set. Here, the threshold is set to 0.5, which is the true positive. 

IoU is vital in fetal detection in US images for evaluating the accuracy of object detection models by 

measuring how well the predicted bounding boxes align with the actual fetal structures. High IoU ensures 

precise localization, which is critical for accurate diagnosis and monitoring of fetal development. 

𝐼oU=
ground truth∩prediction

ground truth∪prediction
 

 

Precision defines the correctness of the model in detecting only the relevant objects in each class. It is the 

ratio between True Positives (TP) over the total number of detections made by the model as given in 

Equation 2. Precision is important as it indicates the proportion of correctly identified fetal structures 

among all detected instances. High precision minimizes false positives, ensuring that only accurate and 

relevant detections are used for diagnosis and monitoring. 

 

Precision=
True positives (TP)

Total number of detections
  

 

The ability of detecting the ground truths by the model is defined by Recall. It is the ratio between True 

Positives (TP) over all the ground truths as given in Equation 3. Recall measures the ability of the model to 

identify all relevant fetal structures. High recall ensures that no significant fetal features are missed, which 

is crucial for comprehensive monitoring and accurate diagnosis of fetal health. 

 

Recall=
True positives (TP)

Total number of ground truths
 

 

F-1 score is a single metric which combines precision and recall as shown in Equation 4. F-1 score is 

important because it balances precision and recall, providing a single metric that reflects both the accuracy 

and completeness of the detections. A high F1 score indicates that the model effectively identifies fetal 

structures with both minimal false positives and minimal missed detections, ensuring reliable assessment 

of fetal health. 

F-1 score=
2×recall×precision

recall+precision
 

 

mAP provides a single measure of overall accuracy. It quantifies the average precision across multiple 

classes or categories in object detection. Equation to calculate mAP is given in Equation 5. N is the total 

number of classes and 𝐴𝑃𝑖  is the average precision for class i. 

mAP=
1

N
∑N

i=1 APi 

  Equation 1 

 Equation 2 

 Equation 3 

 Equation 4 

 Equation 5 
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Statistical Analysis of Subjective Data 

 

Considering the comparable objective analysis results of YOLO-s to the YOLO-l and its low computer 

complexity, a subjective test was conducted to validate the usability of YOLO-s in a clinical set-up. 5 expert 

professionals including medical practitioners in the field of gynecology and biomedical engineers working 

with medical US imaging were engaged in conducting the subjective analysis. Each of the participants in 

the group was provided with a set of 17 sample images randomly extracted from the output images of the 

YOLO-s object detection model and had them rate the usability of images clinically using a Likert scale, 

ranging from 1 (poor) to 5 (excellent). To avoid the observer variabilities, 3 repeated images were included 

in the questionnaire. In addition, the order of presentation of images was randomized. Moreover, the 

procedure was repeated at least two days apart from the initial attempt.  

 

Different statistical techniques were used to assess the inter-rater agreement and intra-rater agreements for 

data and rating reliability respectively. Cohen’s Kappa given in Equation 6 was used to assess pairwise 

inter-rater agreement beyond chance, as well as intra-rater agreement between the same rater on the same 

image but repeated attempts.  

 

𝑘 =
1−𝑃𝑒

𝑃𝑜−𝑃𝑒
     

 

In Equation 6, Kappa Score (k), calculated using relative observed agreement among raters (Po), 

hypothetical probability of chance agreement (Pe). Table 2 presents the Kappa score interpretations for both 

methods. 

Table 2. Kappa score interpretation 

Kappa Score  (k) Agreement beyond chance 

𝑘 < 0 Poor agreement 

0 ≤ 𝑘 ≤ 0.2 Slight agreement 

0.2 ≤ 𝑘 ≤ 0.4 Fair agreement 

0.4 ≤ 𝑘 ≤ 0.6 Moderate agreement 

0.6 ≤ 𝑘 ≤ 0.8 Substantial agreement 

0.8 ≤ 𝑘 ≤ 1.0 Perfect agreement 

 

To calculate the collective agreement between all raters, Fleiss Kappa (kfleiss) given in Equation 7 was used. 

        𝑘𝑓𝑙𝑒𝑖𝑠𝑠 =
𝑃−𝑃𝑒

1−𝑃𝑒
   

 

The Intraclass Correlation Coefficient (ICC) was used to evaluate the reliability of ratings made by different 

raters. The method was adapted in such a way that ordinal data was treated as interval data, implying 

equal spacing between rating categories, and assuming the data are continuous and normally distributed. 

Equation 8 presents the equation used to calculate ICC using a 2-way mixed-effects model, which considers 

both the mean square of differences between targets (BMS) and within targets (WMS), adjusted for the 

number of raters (k). Table 3 presents the ICC score interpretations. 

 Equation 6 

 Equation 7 
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𝑘𝑘𝑘 =
𝑘𝑘𝑘−𝑘𝑘𝑘

𝑘𝑘𝑘+(𝑘−1)𝑘𝑘𝑘
  

 

Table 3. Intraclass Correlation Coefficient (ICC) score interpretation 

ICC Value Interpretation 

0 ≤ 𝑘 ≤ 0.4 Poor reliability 

0.4 ≤ 𝑘 ≤ 0.75 Modest reliability 

0.75 ≤ 𝑘 ≤ 1.0 Excellent reliability 

 

Results and Discussion 

 

The performance of the implemented 7 models were compared with each other for object detection in 

fetal US images. Table 4 presents the comparison results.  

 

Table 4. Comparison of the performance evaluation metrics  

Method 
Precision @ 

0.5 
Recall @ 0.5 F-1 score mAP @ 0.5:095 

ResNet-50 faster RCNN 0.950 0.966 0.958 0.583 

MobileNet SSD faster R-CNN 0.955 0.960 0.958 0.583 

MobileNet SSD 320 faster 
RCNN 

0.912 0.924 0.918 0.535 

YOLO V5-n 0.980 0.963 0.972 0.709 

YOLO V5-s 0.991 0.968 0.979 0.734 

YOLO V5-m 0.969 0.963 0.966 0.747 

YOLO V5-l 0.982 0.975 0.978 0.751 

 

According to Table 4, faster R-CNN based detection models provide mAP in-between 0.535 to 0.583 while 

the mAP of YOLO-v5 is ranging from 0.709 to 0.751. Accordingly, YOLO-v5 works better for fetal detection 

in US images compared to faster R-CNN. YOLO v5-l has shown the best performance for fetal detection in 

US images by achieving best F-1 score and mAP of 0.978 and 0.751, respectively. Figure 9 visualizes the 

results given in Table 1 in a graph. 

 

 Equation 8 
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Figure 9. Graphical comparison of performance parameters of the implemented algorithms  

However, as the ultimate objective of this research work is to provide the scanning facilities in low-end 

devices, computer complexity analysis for YOLO-v5 versions was conducted. The comparison of the 

computer complexity of YOLO-v5 versions is presented in Table 5.   

 

Table 5. Computer Complexity Analysis of YOLO V5 Versions 

YOLO-V5 Model No. of Parameters GFlops 

Nano (n) 1,761,871 4.2 

Small (s) 7,025,023 15.9 

Medium (m) 20,856,975 48.0 

Large (l) 46,113,663 107.8 

 

According to Table 5, among YOLO-V5 models, YOLO-n and YOLO-s have demonstrated significantly low 

computer complexity. Figure 10 presents a comparative analysis of the outputs from YOLO-n and YOLO-

s. The first row displays the outputs from YOLO-n, while the second row shows the outputs from YOLO-

s. In each image, the red box highlights the detected object and provides the corresponding accuracy in 

numerical values. 

 

According to the subjective analysis test results of the YOLO model, inter-rater Cohen’s Kappa values 

ranged from 0.34 (fair agreement) to 0.74 (substantial agreement), where the majority fell under 0.4 and 0.6, 

denoting a moderate level of agreement. On the other hand, the majority of experts demonstrated perfect 

intra-rater reliability (Kappa score of 1), except for a few deviations. Meanwhile, Fleiss' Kappa resulted in 

a value of 0.69 multi-rater agreement, indicating substantial agreement on the between raters beyond 

chance. An ICC value of 0.7 indicated modest reliability. The results suggest that despite some differences 

in individual ratings, the expert ratings were fairly consistent with each other. 
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Figure 10. Examples for a comparison of outputs of YOLO-n and YOLO-s 

 

Limitations of the Presented Work  

 

Benchmark common detection models, faster RCNN, and YOLO-V5 may fail in some cases to detect small 

objects as they might not appear across all feature maps. Hence, detection of the fetus in the first few weeks 

is challenging [46]. However, improving the image resolution resolves the issue to some extent. Increasing 

the diversity of the dataset by including images of the different health conditions may assure the reliability 

and accuracy of the algorithm in a clinical set-up [37] . Therefore, the data distribution can be improved by 

including more unhealthy fetuses and special cases such as twins and triplets [60]. In addition, data 

annotation can be strengthened by using annotated data by five or more experts, and the same image can 

be annotated more than once by one expert. This process reduces the inter-observer variability and intra-

observer variability in the algorithm [5]. Typical routine US scans capture the videos of the fetuses from 

different angles [41, 45]. Therefore, the detection of the fetus in video frames following accurate fetal US 

standard plane extraction from the videos is suggested. That is, mid-sagittal plane extraction from the fetal 

US videos is required prior to fetal detection. The work presented in this paper is limited to first-trimester 

fetuses captured in the mid-sagittal plane. Working with other fetal US planes in all trimesters is required 

to adapt YOLO V5-s to the clinical set-up.  

 

Conclusion 
 

Ultrasound is recommended for expectant mothers due to its non-invasive, non-ionizing nature, offering a 

safe means to monitor fetal health and growth. However, in rural areas of underdeveloped and developing 

countries, access to timely routine scans is hindered by a lack of expertise and facilities. This delay can lead 
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to severe consequences, increasing the risk of fetal and maternal deaths, particularly during the critical first 

trimester. To address this issue, innovative solutions such as remote monitoring and self-scans utilizing 

low-end smart devices are proposed. These technologies aim to bridge the gap, providing accessible and 

timely care to expectant mothers in resource-constrained settings. The study was conducted using a 

collection of 171 2D fetal ultrasound images depicting the entire fetus captured in the mid-sagittal plane 

during the first trimester. 

  

The identification of fetuses in ultrasound images is a crucial component of remote monitoring and self-

scanning initiatives. However, this task is inherently challenging for various reasons. These reasons include 

distortions such as blurry edges and low contrast, arbitrary shapes and the small sizes of the fetuses, large 

variability in images, special cases such as twins, and health disparities. In this study, the focus is on 

evaluating the efficacy of YOLO-s in fetal detection. To assess its performance, the model is compared 

against benchmark algorithms, including ResNet-50 and MobileNet-based faster R-CNN, as well as YOLO-

n, YOLO-m, and YOLO-l. This comparative analysis aims to provide insights into the strengths and 

weaknesses of YOLO-s in relation to established detection algorithms, contributing valuable information 

to the advancement of fetal detection in ultrasound imaging for remote monitoring and self-scanning 

applications. 

 

This study explores the use of computationally efficient YOLO V5_s for fetal detection in ultrasound 

images. The model is compared with benchmark detection models, including faster R-CNN with base 

networks ResNet-50 and MobileNet, YOLO-n, YOLO-m, and YOLO-l. YOLO-based models outperform 

faster R-CNN models, with YOLO-l exhibiting the best performance with an F-1 score of 0.978 and an mAP 

of 0.751. Despite the low computer complexity, YOLO-n's lower mAP of 0.709 renders it unsuitable for 

clinical use. A subjective test involving experts with over five years of experience validates the utility of 

YOLO-s in the clinical setting. The collective mean of independent image ratings indicates above-average 

clinical usability. Cohen's Kappa values reveal a fair level of agreement among raters, while Fleiss' Kappa 

of 0.69 indicates substantial agreement beyond chance, and an ICC value of 0.7 suggests modest reliability 

consistency between raters.  Future Overall results endorse the application of YOLO-s for real-time fetal 

detection in the first trimester, offering a promising solution for remote monitoring in resource-constrained 

settings. However, further validation through strong subjective analysis is recommended. 

 

Commonly used detection models such as faster RCNN and YOLO-V5 may result in inaccurate predictions 

due to the small size of fetuses in the first trimester. This can be overcome by enhancing image resolution 

and diversifying datasets. Strengthening data annotation through multiple expert annotations reduces 

variability improving the validity. While this study focuses on mid-sagittal plane extraction for first-

trimester fetuses, future work should extend to other fetal ultrasound planes in all trimesters for 

comprehensive clinical applicability. 
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