
A Novel Approach to Enhance the Efficiency of
Apriori Algorithm

Erandi Herath
Department of Computer Engineering

University of Sri Jayewardenepura
Colombo, Sri Lanka

erandikghs@gmail.com

Udaya Wijenayake
Department of Computer Engineering

University of Sri Jayewardenepura
Colombo, Sri Lanka

udayaw@sjp.ac.lk

Abstract—Data mining is the process of obtaining valuable or
significant information from a large-scale database. One signif-
icant area of research in the field of data mining is association
rules mining. Apriori algorithm is one of the classical algorithms
in the association rule mining field. This research analyses the
basic ideas and shortcomings of the Apriori algorithm and
compares several different styles of its major improvement
strategies. Then it suggests an improved version of the Apriori
algorithm that utilizes a dataset summarization method, an
optimized database mapping technique, an intersection operation,
and a joined optimization strategy. These enhancements aim
to address the low performance and efficiency by reducing the
generation of candidate itemsets and minimizing the execution
time. This addresses the issues of generating numerous candidate
itemsets and repeatedly scanning the transaction database. After
implementing the optimized algorithm, to verify its effectiveness,
it has been applied to a groceries dataset, which is for market
basket analysis. The improved Apriori algorithm demonstrated
significant enhancements over the original algorithm in terms
of reduced candidate itemsets and running time, leading to
improved algorithm efficiency.

Index Terms—Data mining, Association rules, Apriori algo-
rithm, Market basket analysis

I. INTRODUCTION

Data mining is the study of identifying relevant patterns
in large amounts of complicated data while also obtaining
crucial information. One significant area of research in the
field of data mining is association rules mining. Association
rule mining is a procedure which aims to find recurring
patterns, correlations, or relationships in datasets. Association
rules capture the inherent relationships between data items,
revealing their interconnectedness and dependencies [1]. Fre-
quent items are found in association rule mining applications
in key technologies and procedures. The goal of frequent
itemsets mining is to extract very frequent itemsets from
massive volumes of data. Its most common use is to discover
new rules in the sales transaction databases that reflect the
patterns of customer purchasing behavior, such as the effects
on other goods after purchasing a particular kind of goods [2].
This is known as market basket analysis.

Apriori algorithm is one of the classical algorithms in the
association rule mining field. It was first proposed by Agrawal
and Srikant in 1993 [3]. This algorithm is based on a breadth-
first search and has a straightforward, understandable data

structure. In particular, Apriori employs an iterative layer-
by-layer search strategy, using (k − 1)-dimensional frequent
itemsets (Lk−1) to explore k-dimensional frequent itemsets
(Lk) [4]. The algorithm has its unique advantages in looking
for frequent itemsets. The process of deriving Lk from Lk−1

consists of two steps: the join step and the prune step.
• The join step: combine the itemsets in Lk−1 to generate

possible candidate itemsets, which is denoted as Ck

where Lk ⊆ Ck [4].
• The prune step: scan the database to get the count of each

and every candidate itemset. When the count falls below
the required level of support, it should be removed from
the candidate itemsets [4].

Although the Apriori method has undergone substantial
refining, it still has a high space and time complexity and low
efficiency. In general, it is challenging to avoid the following
defects:

• Produce large number of candidate itemsets: When em-
ploying frequent (k − 1)-itemsets to generate all of the
candidate k-itemsets (Ck), many connections are needed
and there are a lot of comparisons. If the set of a
frequent item set produced by a candidate item set is
Lk, the temporal complexity of connection constraints
comparison is O(kx2) [5]. .

• Scan the transaction database repeatedly: The database
should be examined numerous times to gather the support
of each proposed k-item set. The database is searched at
least n times where k ϵ Z+; k ≤ n [5].

• Time consumption when matching candidate itemsets and
transaction patterns: For c ϵCk, every (k− 1)-itemsets in
c should be tested whether it is in Lk−1 or not [4]. Under
the best-case scenario, Lk−1 can meet the requirements
with just one scan. But in the worst-case scenario, the
requirements will not be met until scanning Lk−1, k times
[5].

This research analyses the basic ideas and shortcomings
of Apriori algorithm and compare several different styles of
the major improvement strategies. This research proposes an
enhanced Apriori algorithm that addresses the low perfor-
mance and efficiency of the original algorithm. The improved
approach reduces the generation of candidate itemsets and

avoid repetitive scanning of the transaction database. To verify
the effectiveness of the optimized algorithm, it is applied to
a dataset, which is for market basket analysis and the results
are compared.

II. RELATED WORK

Since the Apriori algorithm was first developed, many
scholars have conducted extensive studies and have presented
several practical ways for improvement. The major techniques
are hash-based, transaction reduction, database mapping and
sampling.

A. Hash-Based Technique

The k-itemsets and associated count are generated by this
approach using a hash-based structure known as a hash table.
It creates the table using a hash function [6].

Chang and Liu [7] introduced an improved algorithm that
directly generates L2 from a single scan of the database,
eliminating the need to generate C1, L1, and C2. Additionally,
they replaced the hash tree with a hash table to reduce the cost
of searching. They also employed an efficient horizontal data
representation and optimized storage strategy, resulting in time
and space savings.

Doshi and Joshi [8] also proposed a hashing algorithm
to enhance the effectiveness of the Apriori algorithm. This
involved utilizing a dictionary (hash table) to store candidate
itemsets as keys, while the corresponding value represented
the count of their occurrences.

B. Trasasaction reduction

With this technique, fewer transactions must be scanned
throughout each cycle. Transactions that do not include fre-
quently used items are flagged or deleted [6].

Cheng et al. [9] introduced a solution to address two
issues commonly found in security audit systems: low-level
intelligence and underutilization of audit logs. They have pro-
posed the E-Apriori algorithm which uses only the transaction
reduction technique. The proposed solution involved the use
of association rule mining to create a secure audit system.

Chen et al. [4] proposed BE-Apriori algorithm, which is
based on two strategies: the transaction reduction strategy and
pruning optimization strategy. In pruned optimization strategy,
they have reduced the items in Lk−1, which is used to generate
Lk. In the transaction reduction strategy, the transactions that
need to be scanned have been reduced.

C. Database partitioning

The common itemsets are mined using database partitioning
with just two database scans. It states that each itemset must
be frequent in at least one database partition in order for it to
be considered potentially frequent in the database [6].

Yang et al. [10] introduced the SIAP algorithm which uses
the database partitioning and mapping technique. In the first
phase of this method, transactions were cut into n blocks
horizontally and distributed to m nodes. By running the IAP
algorithm n times on m nodes, all the local frequent itemsets

are found. In the second phase, global frequent itemsets were
generated.

Subithra and Dhenakaran [11] introduced a partitioning
algorithm that divides a transactional dataset (D) into n
partitions, D1 to Dn. This algorithm streamlines the dataset
processing by performing two main steps. In the first step,
the algorithm identifies all itemsets within each partition,
collecting the frequent itemsets specific to each partition. In
the second step, these global itemsets are counted to determine
their significance across the entire dataset. By dividing the
dataset into partitions and leveraging these two processes, the
partitioning algorithm enhances the efficiency of discovering
frequent itemsets.

D. Database mapping

In database mapping technique, the original transaction
database will be mapped in a way such that it will optimize
the database scanning process [6].

In 2013, Zhang et al. [5] proposed the OApriori algorithm,
which is based on the transaction reduction technique and
database mapping technique. In this method, they have op-
timized a mapping method of the database and the connection
setup. By using this new data mapping approach, the database
is scanned only once. As a result, the frequent itemsets can
be obtained simply by scanning the Ck and the generated Lk.
This approach effectively addresses the issue of multiple scans,
improving the efficiency of the Apriori algorithm.

Du et al. [12] proposed DC_Apriori algorithm, which
used the transaction reduction technique, database partitioning
method and database mapping method [12]. It restructures the
storage structure of the database and improved the connection
of frequent itemsets. The generation of Lk was only needed
to join the L1 with Lk−1. The running time of DC_Apriori
was significantly less than the Apriori algorithm.

E. Sampling

This technique involves randomly selecting a sample (S)
from the database (D) and searching for frequent itemsets
within S. However, when using sampling, there is a possibility
of losing common itemsets that are globally used. To mitigate
this, the minimum support value can be decreased [6].

Krishna and Amarawat [13] proposed a sampling-based
approach to improve the performance of the Apriori algorithm.
The algorithm utilizes random sampling from the database
to identify frequent itemsets. It works by selecting a random
sample (S) and finding frequent itemsets within that sample
using a lower support threshold. This approach provides an
efficient way to handle large databases that do not fit into
main memory by working with smaller partitions or samples.

Umarani and Punithavalli [14] introduced a novel and
effective progressive sampling-based approach specifically de-
signed for mining association rules in large databases. Initially,
they used the Apriori algorithm to extract frequent patterns
from an initial sample, which is carefully chosen based on
temporal characteristics and database size. Using the gener-
ated frequent itemsets, they obtained and sorted the negative

border of the initial sample. Next, they scanned the midpoint
itemset in the sorted negative border against the concrete
database to determine its frequency. Their experimental results
demonstrated the efficiency and effectiveness of the proposed
progressive sampling approach in association rule mining.

F. Other approaches

In the year 2020, Karimtabar and Fard suggested Intelligent
Apriori (IAP) algorithm which uses a matrix-based method
[15]. This technique prevents the creation of unnecessary
itemsets when constructing a new matrix, which reduces the
number of transaction scans required to produce frequent
itemsets [15]. The results of their experiment showed that
the proposed algorithm significantly reduces the number of
transaction scans required to find frequent itemsets.

Yang [16] proposed AC-Apriori algorithm which uses a
new technique “AC automation” [16]. They have introduced
the AhoCorasick (AC) automation method which converts the
process of traversing a transaction to a multimode match. The
AC-Apriori algorithm was a combination of two techniques:
the Apriori algorithm and the Aho-Corasick automation. It
aimed to reduce the number of times a transaction database
needs to be scanned while still achieving the same mining
results.

Despite significant refinements proposed by previous re-
searchers, the Apriori algorithm still continues to exhibit
high space and time complexity, leading to low efficiency.
Therefore, we introduce a novel strategy, which combines a
utilization of a summarized dataset, an optimized database
mapping technique, an intersection operation, and a new
joined optimization strategy. Prior to our research, no one
has extensively explored a combined method similar to ours.
Through our research, we demonstrate the effectiveness of
the proposed method in enhancing the Apriori algorithm and
propose it as a valuable alternative in association rule mining
tasks.

III. PROPOSED APRIORI ALGORITHM

In this research we propose several improvements for Apri-
ori algorithm to increase its efficiency.

A. Summarized dataset

In this research, we have introduced a new data summariza-
tion method. For the experiment, we used a groceries dataset
which is for market basket analysis. It consisted of three
columns which are member, date and item description. This
dataset consisted of 38765 rows, including purchase orders of
people from grocery stores. The data set is available in Kaggle
[17].

After summarizing the original dataset, the summarized
dataset focused on essential details, including three columns:
items, transactions, and available sizes. The item column
contained item details, the transaction column held relevant
transaction ids (TIDs), and the available sizes column indi-
cated the quantity of items per transaction.

Generating the summarized dataset is a one-time process,
more time-efficient than the original Apriori algorithm. In the
original algorithm, generating k-dimensional frequent itemsets
involves repeated scans of the entire database, leading to sig-
nificant time consumption. The optimized algorithm addresses
this inefficiency by extracting only necessary information from
the original dataset, avoiding repetitive scans and reducing
computational time.

B. Optimized database mapping technique

After summarizing the original database, we introduced a
new database mapping technique. We used four linear tables
for this purpose. The first table stored the frequent itemsets, the
second table stored the relevant transaction IDs (TID) of the
frequent itemsets, the third table stored the infrequent itemsets,
and the fourth table stored the available sizes of the itemsets.

C. Introduction of intersection operation

When generating candidate k-item sets from frequent (k −
1)-item sets, we performed the intersection operation on the
corresponding transaction number sets. This operation allowed
us to generate new transaction number sets by obtaining the
intersection of the transaction sets from the itemsets that were
being joined.

D. Joined optimization strategy

In our research, we introduced a size-checking method for
itemsets to optimize the generation of candidate itemsets. This
method involved a careful examination of each item in the two
itemsets being combined, ensuring that their sizes were greater
than or equal to the specified threshold value denoted as k.
If any item failed to meet this size requirement, all itemsets
containing that specific item were excluded from consideration
in Ck. This approach effectively filtered out itemsets that did
not meet the size criteria, focusing on relevant and meaningful
itemsets for further analysis.

During the generation of candidate itemsets, we imple-
mented a check for at least one common transaction between
the itemsets being joined. If no common transactions were
found, it signaled that generating candidate itemsets using
those specific itemsets would be futile. Consequently, can-
didate k-itemsets were not generated from those itemsets,
contributing to a more efficient and streamlined process.

The introduction of the infrequent itemset: During the prun-
ing step, we kept another linear table to store the infrequent
itemsets. These infrequent itemsets were characterized by
having a support value less than the minimum support count.
When generating candidate itemsets, we conducted checks on
these infrequent itemsets. Specifically, we examined if any
subsets of the two itemsets being joined were present in the
infrequent itemset collection. If we found such subsets, using
them candidate itemsets were not generated. Consequently, all
candidate itemsets containing these subsets were disregarded
and ignored in the subsequent analysis.

 Step 01: original dataset Step 02: Summarized dataset

 T1 T2 T3 T4

1 1 0 1 0

2 2 2 2 2

3 0 3 3 3

4 0 4 0 0

5 0 5 5 5

 Step 04: 𝐿1 Step 03: 𝐶1

 Step 06: 𝐶2

 Step 05: Infrequent itemset

 Step 08: Infrequent itemset Step 07: 𝐿2

 Step 09: 𝐶3 Step 10: 𝐿3

Itemset TIDs Size

1 T1,T3 2,4

2 T1,T2,T3,T4 2,4,3

3 T2,T3,T4 4,3

4 T2 4

5 T2,T3,T4 4,3

Itemset TIDs Support

1 T1,T3 0.5

2 T1,T2,T3,T4 1

3 T2,T3,T4 0.75

5 T2,T3,T4 0.75

Itemset TIDs Support

1 T1,T3 0.5

2 T1,T2,T3,T4 1

3 T2,T3,T4 0.75

4 T2 0.25

5 T2,T3,T4 0.75

Itemset TIDs Support

1,2 T1,T3 0.5

1,3 T3 0.25

1,5 T3 0.25

2,3 T2,T3,T4 0.75

2,5 T2,T3,T4 0.75

3,5 T2,T3,T4 0.75

4

4

1,3

1,5

Itemset TIDs Support

1,2 T1,T3 0.5

2,3 T2,T3,T4 0.75

2,5 T2,T3,T4 0.75

3,5 T2,T3,T4 0.75

Itemset TIDs Support

2,3,5 T2,T3,T4 0.75

Itemset TIDs Support

2,3,5 T2,T3,T4 0.75

Fig. 1. Table-based execution process of the improved Apriori algorithm,
showcasing enhancements for candidate itemsets and generating frequent
itemsets

E. Execution process of improved algorithm

In Fig. 1, the initial dataset is introduced in Step 01,
serving as the starting point for subsequent analytical steps.
Following a summarization process in Step 02, a refined
dataset is obtained. The construction of a distinct subset, C1,
is illustrated in Step 03, where the support count for each
itemset is calculated. Items with a support count below the
minimum threshold (set at 0.3) are systematically eliminated,
leading to the formation of L1 in Step 04. Simultaneously, the
infrequent itemset is updated with items below the minimum
support (Step 05).

The subsequent phase involves generating k-dimensional
itemsets from k − 1 dimensional ones. For instance, in Step
06, 2-dimensional candidate itemsets, C2, are derived using the
1-dimensional frequent itemset. During this process, itemsets
with a size less than two are excluded, and conditions regard-

ing common transactions and infrequent itemsets are checked
(here k− 1 = 1, so k = 2). This iterative procedure continues
until no further frequent itemsets can be ascertained, as
demonstrated by the example, concluding with the derivation
of L3 in Step 10.

F. Optimized algorithm
Our optimized algorithm takes the minimum support value

(minsup) as input and provides the output of frequent itemsets
(Lk). This optimized algorithm consists of three essential
functions that play a vital role in creating candidate itemsets
and detecting frequent itemsets.

1) One-dimensional candidate itemset generation function:
This function is responsible for generating the initial
candidate itemsets denoted as C1. Its primary purpose is
to create the set of itemsets for the first level of analysis
(see Algorithm 1).

2) Frequent itemset generation function: This function
plays a key role in generating frequent itemsets. It iden-
tifies itemsets that meet a specified minimum support
threshold and are deemed significant for further analysis
(see Algorithm 2).

3) Candidate itemset generation function: The candidate
itemset generation function focuses on generating can-
didate itemsets for subsequent levels of analysis. It
combines frequent itemsets from the previous level to
form new potential itemsets for further evaluation (see
Algorithm 3).

Algorithm 1 Function to generate one dimensional candidate
itemsets

1: procedure CREATEC1()
2: n=no of rows in summarized dataset
3: i=0
4: C1=one dimensional candidate Item set
5: S1=available Sizes Set
6: while i ≤ n do
7: Add item to C1

8: Add item to S1

9: Sort C1

10: return C1, S1

Algorithm 2 Function to generate frequent item sets
1: procedure GENERATEFREQUENTITEMSETS(Ck, Tk ,MIN

SUP,INFREQUSET)
2: while not end of the itemsets in Ck do
3: supCount=size((Tk[itemset]))/totalTrans
4: if supCount>= minsup then
5: Add itemset to Lk

6: FITrans[itemset]=Tk[itemset]
7: supVal[itemset]=supCount
8: else
9: Add itemset to inFrequSet

10: return Lk, FITrans, supVal, inFreqSet

Algorithm 3 Function to generate candidate itemsets
1: procedure GENERATECANDIDATE-

SETS(Lk, Tk, Sk, k, inFrequSet)
2: for i in range(size(Lk)) do
3: for j in range(i+ 1, len(Lk)) do
4: L1 = Lk[i][: k − 2]
5: L2 = Lk[j][: k − 2]
6: Sort L1

7: Sort L2

8: if L1 == L2 then
9: newItemSet = Lk[i] ∪ Lk[j]

10: for each item in newItemSet do
11: for element in Sk[item] do
12: if k ≤ element then
13: boolCheck.append(True)
14: Break the Loop
15: else
16: Continue
17: if size of list boolCheck == k then
18: tempValueHolder = Lk[i] ∩ Lk[j]
19: if tempValueHolder is empty then
20: for each itemSet in inFrequSet do
21: for item in itemSet do
22: for element in newItemSet

do
23: if element == item then
24: increment

KeepTrack
25: if itemSetSize == KeepTrack

then
26: Check = True
27: Break the loop
28: else
29: itemCount = total item count
30: if size of (newItemSet != item-

Count) and (check==False) then
31: add newItemSet to Ck

32: newTrans[newItemSet] = temp-
ValHolder

33: size = Size of Ck

34: return size, Ck, newTrans

IV. EXPERIMENTS AND RESULTS

In the first experiment, we compared the performance of
two versions of the Apriori algorithm across different support
values, as illustrated in Fig. 2. The optimized Apriori algorithm
exhibited remarkable improvements, reducing execution time
to less than half of the original algorithm. The trend also
revealed enhanced efficiency as the support count increased,
indicating its improved capability to handle larger datasets.

Table I provides a quantitative performance comparison,
highlighting execution times and efficiency improvements
across various support values. The average efficiency enhance-
ment of 71.65% reflects the typical reduction in execution time

Fig. 2. Comparison of the execution time between original Apriori algorithm
and optimized Apriori algorithm under different support values.

achieved with the optimized Apriori algorithm, offering a con-
solidated measure of its time-saving capabilities in different
scenarios.

The substantial reduction in execution time achieved by
the optimized Apriori algorithm aligns with the primary goal
of this research, which is to enhance the efficiency of the
algorithm. This improvement is crucial for handling large-
scale datasets and time-sensitive applications where quick and
efficient mining is essential.

The optimized Apriori algorithm offers superior time ef-
ficiency, enhancing productivity and decision-making across
domains like market basket analysis, recommendation systems,
and customer behavior analysis. Rapid data processing enables
quicker insights and the identification of valuable patterns and
relationships.

In Fig. 3, a visual comparison depicts the number of gener-
ated candidate itemsets using the original Apriori algorithm
and the optimized version at different support values. The
optimized algorithm consistently generates about half the can-
didate itemsets, showcasing substantial improvement through
efficient pruning. This reduction minimizes computational
overhead, enhancing speed and efficiency. The streamlined
search for relevant itemsets simplifies data mining, facilitating
quicker extraction of valuable patterns from large datasets,
aligning with the goal of improving scalability and perfor-
mance.

Apart from the above comparisons, we conducted a valida-
tion using the groceries dataset which is for market basket
analysis. The comparison of results from both algorithms
revealed that they produced the same frequent itemsets. This
serves as a strong evidence or confirmation that the optimized
algorithm is indeed accurate and reliable in its calculations.
Moreover, it demonstrates that efficiency gains were achieved
without sacrificing the accuracy.

TABLE I
PERFORMANCE COMPARISON OF APRIORI ALGORITHMS

Support Value Time Elapsed (ms) Efficiency Improvement
Original Apriori Optimized Apriori

0.0020 8399.23 2455.87 70.76%
0.0025 6763.69 1942.03 71.29%
0.0030 5854.77 1658.26 71.68%
0.0035 5726.23 1425.64 75.10%
0.0040 4892.51 1298.74 73.45%
0.0045 4108.63 1215.47 70.42%
0.0050 3743.67 1166.56 68.84%

Average 71.65%

Fig. 3. Comparison between the number of generated candidate itemsets of
original Apriori algorithm and optimized Apriori algorithm under different
support values.

V. CONCLUSION

This study comprehensively analyzes the fundamental con-
cepts and limitations of the Apriori algorithm, along with
exploring notable enhancement approaches. We proposed mul-
tiple improvements to reduce execution time and candidate
itemsets, enhancing efficiency around 70%. Future enhance-
ments could target memory reduction and feature selection.
Optimizing the algorithm holds promise across domains like
education, healthcare, E-Commerce, and ecological research.
It could recommend courses, detect medication patterns, ana-
lyze product associations, and aid ecological studies. These ad-
vancements amplify the Apriori algorithm’s applicability and
effectiveness, contributing to refined association rule mining
solutions.

VI. ACKNOWLEDGEMENT

This research was supported by the Science and Technology
Human Resource Development Project, Ministry of Education,
Sri Lanka, funded by the Asian Development Bank (Grant No.
STHRD/CRG/R1/SJ/06).

REFERENCES

[1] W. Nengsih, “A comparative study on market basket analysis and
apriori association technique,” in 2015 3rd International Conference on
Information and Communication Technology (ICoICT), 2015.

[2] M. Hossain, A. H. Sattar, and M. K. Paul, “Market basket analysis using
apriori and fp growth algorithm,” in 2019 22nd International Conference
on Computer and Information Technology (ICCIT), 2019.

[3] R. Agrawal, T. Imielinski, and A. Swami, “Database mining: A per-
formance perspective,” IEEE Transactions on Knowledge and Data
Engineering, vol. 5, no. 6, pp. 914–925, 1993.

[4] Z. Chen, S. Cai, Q. Song, and C. Zhu, “An improved apriori algorithm
based on pruning optimization and transaction reduction,” in 2011 2nd
International Conference on Artificial Intelligence, Management Science
and Electronic Commerce (AIMSEC), 2011.

[5] K. Zhang, J. Liu, Y. Chai, J. Zhou, and Y. Li, “A method to optimize
apriori algorithm for frequent items mining,” in 2014 Seventh Interna-
tional Symposium on Computational Intelligence and Design, 2014.

[6] Engati, “Apriori algorithm,” Engati, accessed: Jun. 17, 2023. [Online].
Available: https://www.engati.com/glossary/apriori-algorithm

[7] R. Chang and Z. Liu, “An improved apriori algorithm,” in Proceedings
of 2011 International Conference on Electronics and Optoelectronics,
2011.

[8] A. J. Doshi and B. Joshi, “Comparative analysis of apriori and apriori
with hashing algorithm,” International Research Journal of Engineering
and Technology (IRJET), vol. 05, Jan 2018.

[9] M. Cheng, K. Xu, and X. Gong, “Research on audit log association
rule mining based on improved apriori algorithm,” in 2016 IEEE
International Conference on Big Data Analysis (ICBDA), 2016.

[10] S. Yang, G. Xu, Z. Wang, and F. Zhou, “The parallel improved
apriori algorithm research based on spark,” in 2015 Ninth International
Conference on Frontier of Computer Science and Technology, 2015.

[11] M. Subithra and S. S. Dhenakaran, “Performance analysis of apriori and
partitioning method in frequent itemset generation,” IJRDO - Journal of
Computer Science and Engineering, vol. 2, no. 8, August 2016.

[12] J. Du, X. Zhang, H. Zhang, and L. Chen, “Research and improvement
of apriori algorithm,” in 2016 Sixth International Conference on Infor-
mation Science and Technology (ICIST), 2016.

[13] B. Krishna and G. Amarawat, “Data mining in frequent pattern matching
using improved apriori algorithm,” in Advances in Intelligent Systems
and Computing, 2018, pp. 699–709.

[14] V. Umarani and M. Punithavalli, “Developing novel and effective
approach for association rule mining using progressive sampling,” in
2009 Second International Conference on Computer and Electrical
Engineering, 2009.

[15] N. Karimtabar and M. J. Shayegan Fard, “An extension of the apriori
algorithm for finding frequent items,” in 2020 6th International Confer-
ence on Web Research (ICWR), 2020.

[16] J. Yang, H. Huang, and X. Jin, “Mining web access sequence with
improved apriori algorithm,” in 2017 IEEE International Conference on
Computational Science and Engineering (CSE) and IEEE International
Conference on Embedded and Ubiquitous Computing (EUC), 2017.

[17] H. Dedhia, “Groceries dataset,” https://www.kaggle.com/datasets/heerald
edhia/groceries-dataset, Sep 2020, accessed on Dec. 25, 2022.

