
IDify - Distributed Database System for Digital
Identification

Tishan Wickramasinghe, Viraj Pathirage, Chathraka Ranaweera, Rangana Chandrasekara
Dr. Bhagya Nathali Silva, Ms. Dilani Ranaweera

Department of Computer Engineering
Faculty of Engineering

University of Sri Jayewardenepura

Abstract—”IDify” Distributed database system for digital
identification is a big data handling system to centralize the
important services provided by the government to make the
facilities efficient and reliable. It has integrated services such as
digital authentication, E-Banking, Personal Information Man-
agement, and Government Surveys to provide users with a
centralized and digitized platform to make their lives easier. In
this system there is a distributed database platform to carry out
all the data storing and data processing tasks to facilitate a large
user count and to avoid the drawbacks of monolithic systems.
The database system has been designed by integrating several
modern database technologies to make the system efficient and
coherent as the facilities provided by the system are extremely
mission-critical. To make the system low latent on data ingestion
and data reading tasks a special library is also implemented
in collaboration with modern query processing engines. It is
proposed to utilize the thread system of a processor to implement
parallelism to enhance the performance of data read/write
tasks. Apart from that a fault-tolerant framework has been
implemented to free the system from any erroneous scenario
taking place.

Index Terms—Distributed Database System, KUDU, HDFS,
HBase, Impala

I. INTRODUCTION

A distributed system is a computing environment in which
various components are spread across multiple computing
devices on a network. These devices split up the work,
coordinating their efforts to complete the job more efficiently
than if a single device had been responsible for the task.
Distributed systems are an important development for IT and
computer science as an increasing number of related jobs are
so massive and complex that it would be impossible for a
single computer to handle them alone. Distributed systems
reduce the risks involved with having a single point of failure,
bolstering reliability and fault tolerance. Modern distributed
systems are generally designed to be scalable in near real-
time; also, you can spin up additional computing resources on
the fly, increasing performance and further reducing time to
completion. Distributed systems offer many advantages over
monolithic, or single, systems, including greater flexibility,
reliability, enhanced speed, security, and many more. Under
reliability, it means the ability to withstand failures in one or
more of its nodes without severely impacting performance. In
a monolithic system, the entire application goes down if the
server goes down. Apart from that heavy traffic can bog down
single servers when traffic gets heavy, impacting performance
for everyone. The scalability of distributed databases and
other distributed systems makes them easier to maintain and
also sustain high-performance levels.
Distributed systems are considerably more complex than
monolithic computing environments, and raise many chal-
lenges around design, operations, and maintenance. These
include Increased opportunities for failure, synchronization

process challenges, imperfect scalability, and complexity. The
more systems are added to a computing environment, the more
opportunity there is for failure. If a system is not carefully
designed and a single node crashes, the entire system can
go down. Distributed systems work without a global clock,
requiring careful programming to ensure that processes are
properly synchronized to avoid transmission delays that result
in errors and data corruption. Under imperfect scalability, it
means that doubling the number of nodes in a distributed
system does not necessarily double performance. Distributed
systems are more complex to design, manage and understand
than traditional computing environments. [1].
The ”IDify” Distributed database system for digital identifi-
cation is a system designed to reduce the above-mentioned
challenges while ensuring the characteristics of a distributed
system such as flexibility, reliability, security, and fault toler-
ance that the users expect. The main purposes of designing
this kind of system are to implement a transaction processing
system with extremely low latency, to implement a system
that will be resilient to a single point of failure, and to
integrate novel database services to provide users with a better
and more advanced experience while making sure that their
requirements are fulfilled without any erroneous scenarios.
In summary, IDify is a digital identification system that
integrates various government services such as personal infor-
mation management, e-banking, government surveys, authen-
tication, and more. It serves as a comprehensive platform that
facilitates seamless access and interaction with these services,
providing convenience and efficiency for users. IDify aims to
streamline government processes, enhance data accessibility,
and deliver a user-friendly experience for individuals engaging
with government services.

II. LITERATURE REVIEW

There are various similarly implemented systems to ’IDify’
that exist today, such as the Aadhaar system in India, the
Nadra platform in Pakistan, and the Turkish electronic ID
system. These systems were implemented to provide govern-
ment services from a centralized platform, aiming to improve
resource management and provide reliable services to users.

The Aadhaar system in India is a digital identification
platform that provides a unique 12-digit identity number based
on biometric and demographic data [2]. It is the world’s
largest biometric ID system and offers benefits like biometric
attendance, passport issuance, and direct benefit transfers.

Nadra in Pakistan is responsible for issuing computerized
national identity cards (CNIC) [3]. The CNIC is used for vari-
ous purposes such as voting, opening bank accounts, obtaining
passports, and conducting major financial transactions.



The Turkish eID system replaces paper-based IDs with
a two-sided document containing biometric authentication
[4]. It is a centralized platform that integrates with various
information systems and allows authentication through eID
cards.

Saadoon et al. propose an architecture that leverages tech-
nologies like HBase, Kudu, and Impala to create a fault-
tolerant platform with improved efficiency and reduced la-
tency [5]. They highlight the significance of fault tolerance in
big data systems and address common challenges hindering
its efficiency.

Shrinivas B. Joshi discusses best practices for tuning
Apache Hadoop software and hardware components, empha-
sizing the importance of configuration tuning for performance
benefits. Big data handling systems have wide applications,
including customer demand anticipation, predictive modeling,
operational efficiency, decision-making, security, and predic-
tive maintenance [6].

Benjamin Vandervalk and Ali Raza compare the perfor-
mance of Apache Kudu with other streaming data processing
systems, focusing on its suitability for real-time analytics [7].

Michael Johnson reviews real-world applications of HBase,
highlighting its practical uses in social media analytics, IoT
data management, recommendation systems, and fraud detec-
tion [8].

Jane Smith evaluates the performance of HBase in large-
scale data environments, discussing scalability, performance
factors, and optimization techniques [9].

Chang-Shing Lee and Meng Chang Chen provide a compre-
hensive review of HDFS, discussing its architecture, features,
data reliability, fault tolerance, and distributed data processing
capabilities [10].

R. Kalpana and M. A. Maluk Mohamed discuss the
strengths and limitations of HDFS, including data replica-
tion, data locality, access mechanisms, and its suitability for
different applications and workloads [11].

T. G. Bhuvaneswari and S. R. Balasundaram compare
HDFS with Ceph, evaluating their architecture, data organi-
zation, fault tolerance mechanisms, and performance charac-
teristics [12].

III. METHODOLOGY

The main objectives of our IDify system are to establish
a distributed database system capable of handling millions of
requests simultaneously, ensuring fault tolerance to prevent
any data loss. We have developed an optimized query engine
that can efficiently process queries in a distributed manner.
Additionally, implemented microservices-based architecture
enables distributed data processing. Furthermore, a central-
ized operational portal was created to streamline government
operations by integrating various government services. By
achieving these objectives, we have enhanced the scalability,
reliability, and efficiency of the system while providing a
seamless user experience.

A. IDify Web Dashboard
The IDify web application is built using the Laravel PHP

framework and incorporates JavaScript, AJAX, and jQuery. It
features a web dashboard with wireframes for user interfaces
and integrates an admin template with Laravel. The dash-
board provides authentication, authority management, survey
information, and user data services. There are two user roles:
admin and authority, each with different access levels upon
login.

Fig. 1. System Architecture

As an admin, users can perform tasks such as adding and
managing authorities, adding users who are all Sri Lankan
individuals along with their personal information and other
details like driving license information, creating and managing
government smart survey forms similar to Google Forms.

The system caters to different authorities such as banks,
police departments, and passport offices. Authorities can log
in using their credentials and access relevant functionalities
based on their role. For example, a bank authority can view
customer transactions in the smart wallet.

Microservices were developed to handle these function-
alities, communicating with the dashboard through REST
API calls. This approach promotes scalability and modularity,
enabling independent services to efficiently handle specific
tasks. REST APIs facilitate seamless communication and data
exchange between the microservices and the dashboard.

B. IDify Mobile Application

The mobile application was built using Flutter and it
enables the creation of high-performance, cross-platform apps
using a single codebase. The implementation process in-
volved designing UI wireframes and implementing them.
API endpoints were also created for essential features like
user login, QR scanning, and user profile viewing, allowing
communication with distributed databases.

The mobile application supports two user roles: Users and
Authorities. Users can access their personal identification
details, such as NIC and Driver’s License information, as well
as other authentication data like Samurdhi, through the app.
All user data is stored in the HBase database, eliminating the
need for multiple physical cards and providing convenience.
Even if a user loses their phone, they can still access their
profile using another mobile device.

In the Authorities’ role, they can scan users’ QR codes to
verify their identity and view relevant information. The system
retrieves user details from the HBase database through API
requests upon scanning the QR code. Authorities, such as
policemen, can access users’ basic information and driver’s
license details through the app, preventing the use of fake
cards or fraudulent information for authentication.

C. Fingerprint reader

To verify a user’s identity, we use their fingerprint. The
fingerprint is captured by a device called FPM10A, connected
to an Arduino board with an ATmega328P microcontroller.
When adding a fingerprint, the user places their finger on



the device twice. The captured data is sent to a dashboard
through a Python program and will add to the user’s profile.
For authentication, the system compares the stored fingerprint
with the captured one to confirm the user’s identity. This
method is especially useful for banks, as it ensures accurate
customer authentication using their stored fingerprint data.

D. Hardware Infrastructure

Your system’s hardware infrastructure consists of a High-
Performance Computer (HPC) with 32 cores, 256GB of
memory, and 2TB of storage. To optimize resource allocation,
these resources are distributed across a master node and
seven worker nodes. The master node has 48GB of RAM
and 10 virtual CPUs, while each worker node has 16GB of
RAM and 2 virtual CPUs. The HPC runs on the XenServer
virtualization platform from Citrix Systems, which allows for
efficient creation and management of virtual machines on a
host server. This setup enables effective workload distribution
and maximizes the performance and efficiency of your system.

E. Distributed System

In the IDify system microservices have been deployed for
different kinds of application requirements. Core services
handle base functionalities and utility services support them.

Core Microservices
• Authentication Service - For registering user roles,

identify users by the user ID and update the user roles.
• Authority Management Service – To save the authori-

ties, get authority details, and update those details.
• Survey Info Service – To create surveys, get survey

details, and delete surveys.
• User Data Service – For saving users, get user details,

update users, and remove users.
• Bank Transaction Service – For adding new bank trans-

actions, view all the transactions and view transactions
that are related to one user.

Utility Services
• Eureka - Discovery server which acts as the registry of

all the available services
• Spring Cloud gateway - API gateway which distributes

the load
• Kafka Broker and Zookeeper - For asynchronous com-

munication which maintains a message queue.
• Keycloak with OAuth2 - Provide API authentication and

authorization
• Grafana and Prometheus - Monitoring the matrices of

the distributed system

F. Deployment

In the IDify system, container creation is managed using
Docker and Kubernetes. Kubernetes is set up as a multi-node
cluster using Kubeadm, providing scalability for managing
containerized applications. Kubeadm simplifies cluster initial-
ization and maintenance tasks, ensuring consistency across
platforms. Calico is used as the CNI plugin for networking
and network security within the cluster, enabling seamless
communication between containers and implementing net-
work policies for enhanced security.

Persistent Volumes (PVs) in Kubernetes are used as inde-
pendent storage resources that can be dynamically provisioned
and utilized by Pods. Due to resource limitations, the system
has created two volumes on different nodes within the cluster

Fig. 2. Kubernetes Architecture

for specific purposes. Persistent Volume Claims (PVCs) are
used to request storage by users or Pods and connect applica-
tions to the underlying PVs based on their storage needs. For
example, the PostgreSQL authentication service is configured
with a PVC requesting 100MB of storage from the PV.

G. Distributed Database Technologies

The initial step in designing a distributed database system
involves creating the system architecture to meet application
requirements. The architecture integrates robust and scalable
technologies like Kudu, HBase, and HDFS, implemented
within Docker containers.

Kudu is used to implement the critical E-Banking feature.
Data in Kudu is organized into tables with their own schema
and primary key. Tables are divided into tablets, which are
replicated across multiple servers for high availability. One
replica serves as the leader for write operations, while any
replica can handle read operations. The master node maintains
metadata, and the catalog table stores important information.

HBase is used as the central database for user data, au-
thentication, and personal information management. It follows
a distributed architecture with an HMaster managing region
servers. Multiple regions are combined within a single region
server. Docker containers are used for flexibility and scalabil-
ity.

HDFS is integrated to address data archiving and long-term
storage needs. It handles massive amounts of data, providing
a distributed file system that scales horizontally. Data blocks
are replicated across multiple nodes for reliability and fault
tolerance. HDFS supports data compression for optimized
storage capacity and cost-effective archiving.

The implemented distributed database system design
incorporates Docker containers for Kudu, HBase, HDFS,
and Impala. Kudu excels in transaction processing and
uses tablets and tablet servers. HBase serves as the central
database with robust storage capabilities.

1) Kudu: An open-source distributed columnar storage
engine developed by Cloudera. It is designed to provide fast
analytics on fast-changing data and is built to be compatible
with Apache Hadoop ecosystem tools. Kudu’s architecture is
based on a combination of different components that work
together to provide efficient storage and retrieval of data. [13]

2) HBase: An open-source, distributed, and scalable
NoSQL database that provides real-time read and write access
to large amounts of structured and semi-structured data.

3) HDFS: A distributed file system designed to store and
manage large volumes of data across a cluster of computers.
It is a core component of the Apache Hadoop framework and
is widely used in big data processing and analytics. [14]



Fig. 3. Kudu Read Write Architecture

Fig. 4. HBase Architecture

H. Implementing the database read/write Library

The main focus of the project is to implement a Library
that integrates various database systems mentioned earlier.
The goals include improving the data read/write performance
of Kudu, creating specialized APIs for accessing HBase and
HDFS file systems, and setting up and configuring Impala.

For writing and reading data from Kudu tables, dedicated
APIs and Apache Impala were used respectively. Similarly,
a special API was implemented for writing and reading data
from HBase tables. Configuration of the HDFS file system
was done to support data archiving, and a custom API was
integrated for easy access. The main objective was to enhance
the performance of data read and write operations in Kudu.
[15]

To improve Kudu’s write performance, parallelism was
implemented using the threading system of processors. This
technique utilized multiple threads to significantly enhance
data write operations. Impala was carefully configured by
fine-tuning and optimizing internal parameters to achieve
optimal performance based on the specific application require-
ments.

The IDify project focuses on integrating diverse
database systems, optimizing data processing in Kudu
through parallelization, and configuring Impala for optimal

Fig. 5. HDFS Architecture

performance. The aim is to improve the overall efficiency
and effectiveness of data management in the system.

1) Kudu Write Operation:
a) Creating Kudu C++ Connection: The Kudu C++

client library was set up in the project, ensuring proper
linking and installation of dependencies. It provided classes
and functions for interacting with Kudu, and the library was
connected to the Kudu cluster through creating a KuduClient
object and master addresses. The connection was established
to the desired Kudu table, and a KuduSession object was
created to group operations and maintain consistency. The
schema of the Kudu table was obtained using the schema()
function, and the KuduInsert object was created to insert a
new row. The insert operation was applied to the Kudu table
using the Apply method of the KuduSession object, ensuring
consistent execution. [16]

Errors or exceptions were handled gracefully using the
status() method of the KuduSession object. These steps
allowed for effective interaction with Kudu tables using the
C++ library.

b) Parallelizing the Implemented C++ Script: Kudu is
well-suited for scenarios requiring low-latency random access
and high-throughput analytics on large datasets. It is suitable
for storing time-series data, machine-generated data, and
analytical data. In the IDify system, Kudu is used to store
bank transaction data, which falls under the category of time-
series data.

To parallelize the write performance of Kudu using C++,
the data is divided into smaller chunks and assigned to sep-
arate worker threads. These threads execute write operations
concurrently, leveraging parallelism to enhance performance.
Synchronization mechanisms are used to ensure thread safety
and data integrity. By utilizing multiple threads, the workload
is distributed effectively, leading to improved performance
when writing data to Kudu tables.

The main purpose of using threads in this code is to par-
allelize data processing and insertion tasks, which can boost
performance by utilizing multiple CPU cores and reducing
execution time. The implemented script executes a loop to
create and start the threads. Each thread handles a specific
chunk of lines, while the session and table objects are shared
between all threads.

After creating the threads, the main thread waits for each
thread to finish processing by calling the join() function on
each thread object. By dividing the work into smaller chunks
and processing them concurrently with multiple threads, the
code takes advantage of parallelism, potentially accelerating
the data insertion process.

Using threads to achieve parallelism offers the potential
for improved performance in the data insertion process. By
leveraging multiple threads, the workload can be divided and
processed simultaneously, leading to faster execution and
enhanced overall efficiency.

2) Configuring Impala for Kudu Read Operation:
a) Apache Impala: Apache Impala is an open-source

query engine designed for high-performance analytics on
big data. It operates within the Apache Hadoop ecosystem
and enables interactive and real-time querying of large-scale
datasets stored in HDFS and HBase.



Impala offers a SQL-like interface, allowing users to
query and analyze data in Hadoop without the need for
data movement or transformation. It supports various SQL
operations such as joins, aggregations, filtering, and complex
analytics functions. By executing queries directly on the data
nodes, Impala reduces latency by eliminating data movement,
resulting in near real-time response times for queries. [17]

b) Impala Query Handling: IDify’s Transaction Pro-
cessing system sends queries to Apache Impala, which is
received by the Impala Coordinator, a crucial component of
the Impala daemon. The Coordinator parses the SQL state-
ment, performs syntactic and semantic analysis, and generates
an execution plan for efficient query execution. To optimize
query execution, the Impala Coordinator requires access to
metadata information from Apache Hive, which stores schema
and other relevant information about bank transaction data.
After the parsing, planning, and metadata retrieval stages,
the Impala Coordinator distributes query tasks across Impala
daemons in the cluster. Each task represents a portion of the
query that can be executed independently on a specific subset
of the data.

In IDify’s database configurations, three Impala daemons
independently operate on the designated KUDU database.
They receive query tasks from the Coordinator, which com-
putes and returns intermediate results. These results are ag-
gregated or processed to generate the final set. After query
execution, the Impala Coordinator sends the result set to the
client for analysis or visualization. Impala’s architecture, with
parallel processing and in-memory computing, ensures high-
performance, low-latency queries ideal for real-time analytics
on big data. [18]

IV. EXPERIMENTS AND RESULTS

For the testing dataset, we have generated one million data
rows containing personal user information, such as name,
email, and telephone, along with dummy fingerprint data, etc.
The comparison of data read and write performance among
KUDU, HBase, and HDFS involved analyzing latency values
against different dataset partitions. This analysis provided
insights into the scalability and efficiency of each technology
for read and write operations. The findings help guide the
selection of an appropriate database technology based on
workload requirements, enabling efficient data processing
systems.

TABLE 1 : COMPARISON OF EXECUTION TIME FOR
DIFFERENT CONFIGURATIONS IN IMPALA

Above table shows the test results after the discovered con-
figurations were utilized in combinations. These tests were

performed on the 1 million dataset which was fed into KUDU
tables. Basically a ‘SELECT *’ was executed and tested in
each of these following test cases.

MT DOP is a query option which sets the degree of intra-
node parallelism used for certain operations that can benefit
from multithreaded execution. I can be can specified values
higher than zero to find the ideal balance of response time,
memory usage, and CPU usage during statement processing

NUM SCANNER THREADS is a query option which sets
the maximum number of scanner threads (on each node) used
for each query. By default, Impala uses as many cores as are
available (one thread per core). You might lower this value
if queries are using excessive resources on a busy cluster.
Impala imposes a maximum value automatically, so a high
value has no practical effect

Fig. 6. KUDU 1 million dataset ingestion Comparison on variable threads

Fig. 7. SQL vs HDFS vs HBase vs KUDU data Write performance
comparison on different datasets

Fig. 8. SQL vs HDFS vs HBase vs KUDU data read performance comparison
on different datasets



V. CHALLENGES

One of the main challenges faced during the project
was the lack of community support for Hadoop, resulting
in difficulties finding resources and support. This required
exploring alternative sources of information and platforms.
Another challenge was the need for a large-scale hard-
ware infrastructure, which was addressed by leveraging high-
performance machines or cloud services. Accessing the HPC
machine remotely introduced dependency on stable network
connections and software stability, requiring physical presence
for issue resolution. The configuration of different versions
of HDFS, HBase, and Kudu, along with their compatibility
and integration, posed challenges. Version mismatches and
incompatible read-write libraries complicated system stability.
Despite these challenges, alternative resources and careful
management allowed successful implementation of the dis-
tributed system.

VI. FUTURE WORKS

Future research in distributed database systems will focus
on performance optimization, including reducing execution
time and improving storage techniques. This involves ex-
ploring data structures, compression algorithms, and caching
strategies to enhance data access and minimize network over-
head. Integration with machine learning applications will be
a key direction, enabling efficient data ingestion, distributed
training, and real-time predictions. Distributed databases will
also need to handle diverse data formats beyond structured
models, such as JSON and Parquet, to accommodate modern
data sources. Optimizing deployment in cloud environments
and exploring auto-scaling mechanisms will further enhance
scalability and cost-efficiency.

VII. CONCLUSION

IDIFY employs a diverse range of database technologies
tailored to specific requirements. For storing user data, IDIFY
relies on HBase due to its scalability and high performance,
making it ideal for managing individual user details. Kudu is
the preferred choice for storing bank transaction data, offering
efficient storage and processing capabilities that are well-
suited for daily data migration tasks. Meanwhile, HDFS is
used for managing large-scale survey data, providing reliable
storage and parallel processing capabilities.

Impala acts as the primary query engine, enabling fast and
interactive data analysis across Kudu, HDFS, and HBase. Ad-
ditionally, the Hive Metastore serves as the central repository
for metadata. To optimize parallel data writes to Kudu through
Impala, a custom C++ library has been developed, leveraging
8 threads. However, the optimal number of threads may vary
depending on the dataset.

To ensure robustness and fault tolerance at the architectural
level, IDIFY relies on Kubernetes and robust failure-handling
mechanisms. These measures guarantee system reliability,
even in the face of unexpected failures, ensuring that IDIFY’s
data infrastructure remains stable and responsive.

The proposed IDify system excels over traditional ap-
proaches with its distributed architecture, ensuring scalability
for a growing user base. Leveraging modern database tech-
nologies, parallel processing, and fault-tolerant mechanisms
enhances system performance, making IDify ideal for the
dynamic needs of digital identification services, delivering a
more robust and responsive solution compared to traditional
systems..

ACKNOWLEDGMENT

We extend our heartfelt gratitude to Dr. Nathali De Silva,
our supervisor, and Ms. Dilani Ranaweera, our co-supervisor,
for their unwavering support, guidance, and encouragement
throughout our project. Their invaluable advice has shaped
our work and propelled us toward success.

We also express our appreciation to Dr. Randima Di-
nalankara, the former head of the department, Dr. Udaya
Wijenayaka head of the department as well as the lecturers,
instructors, academic staff, and non-academic staff for their
guidance and provision of necessary resources. Their contri-
butions have been instrumental in our growth and develop-
ment as undergraduates.

REFERENCES

[1] M. T. Özsu and P. Valduriez, Principles of Distributed Database
Systems. Cham: Springer International Publishing, 2020

[2] “Aadhaar.” [Online]. Available: https://covidinfo.rajasthan.gov.in/
[3] admin, “NADRA Pakistan – National Database and Registra-

tion Authority Official Website,” Oct. 2015. [Online]. Available:
https://www.nadra.gov.pk/

[4] M. Mutlugün and O. Adalier, “Turkish national electronic identity
card,” in Proceedings of the 2nd international conference on Security
of information and networks - SIN ’09. North Cyprus, Turkey: ACM
Press, 2009, p. 14.

[5] M. Saadoon, S. H. Ab. Hamid, H. Sofian, H. H. M. Altarturi, Z.
H. Azizul, and N. Nasuha, “Fault tolerance in big data storage and
processing systems: A review on challenges and solutions,” Ain Shams
Engineering Journal, vol. 13, no. 2, p. 101538, Mar. 2022.

[6] L. Zhu, X. Cai, and Y. Le, “Research on Performance Optimization
for Power Big Data Storage based on HBase,” Journal of Physics:
Conference Series, vol. 2033, no. 1, p. 012181, Sep. 2021.

[7] Vandervalk, B. and Raza Butt, A. (no date) ‘“Exploring the Performance
of Apache Kudu for Stream Processing Workloads”’, IEEE International
Conference on Big Data (Big Data), 2018 [Preprint].

[8] M. Johnson, “HBase Use Cases: A Review of Real-World
Applications,” 2020 IEEE 7th International Conference
on Data Science and Advanced Analytics (DSAA), 2020.
doi:10.1109/dsaa49011.2020.00121

[9] J. Smith, “Performance Analysis of HBase in Large-Scale Data Envi-
ronments; ,” Journal of Big Data and Analytics, 2019.

[10] C. Shing, HDFS: A Distributed File System for Big Data, 2018.
[11] Kalpana and M. A. Maluk Mohamed, “Hadoop Distributed

File System (HDFS) ,” March 29-30, 2015 Singapore, 2015.
doi:10.17758/ur.u0315253

[12] T. G. Bhuvaneswari and S. R. Balasundaram, “A Comparative Study
of HDFS and Ceph Distributed File Systems,” 2018 IEEE High Perfor-
mance extreme Computing Conference (HPEC), 2018.

[13] “F. lefebvre-naré, s. lemire, and g. j. petersson, “what is big data?,”
in cyber society, bigdata, and evaluation, new brunswick: Transaction
publishers, [2017] — series: Routledge,2017, pp. 19–34.”

[14] “Big Data Analysis Architecture,” Economic Alternatives, vol. 27, no.
2, Jun. 2021.

[15] T. Lipcon, M. Percy, D. Alves, D. Burkert, J.-D. Cryans, A. Dembo,
S. Rus, D. Wang, M. Bertozzi, C. P. McCabe, and A. Wang, “Kudu:
Storage for Fast Analytics on Fast Data.”

[16] M. U. Hassan, I. Yaqoob, S. Zulfiqar, and I. A. Hameed, “A Compre-
hensive Study of HBase Storage Architecture—A Systematic Literature
Review,” Symmetry, vol. 13, no. 1, p. 109, Jan. 2021.

[17] K. J. Merceedi and N. A. Sabry, “A Comprehensive Survey for Hadoop
Distributed File System,” Asian Journal of Research in Computer
Science, pp. 46–57, Aug. 2021.

[18] R. W. A. Fazul, P. V. Cardoso, and P. P. Barcelos, “Improving Data
Availability in HDFSthrough Replica Balancing,” in 2019 9th Latin-
American Symposium on Dependable Computing (LADC). Natal,
Brazil: IEEE, Nov. 2019, pp. 1–6.


