#### Session VI - Water Pollution Control

hazards due to accumulation of offal and other wastes. Some processors were not involved in above programme and buried their wastes but complained that they do not have enough area for waste disposal.It is concluded that poultry processing involve with proper waste disposal methods. However, abattoirs use very unhygienic methods for waste disposal while no attention was focused on water pollution as well. Therefore, it is utmost important to educate the abattoirs for proper waste and water management techniques in order to minimize the environmental hazards.

### <u>052</u>

# Colour removal and its mechanisms in textile wastewater treatment by UASB reactor system with anaerobic granular sludge

#### W Somasiri, Li Xiufen, Wenquan Ruan and Jian Chen

Laboratory of Environmental Biotechnology, School of Biotechnology, Southern Yangtze University, Wuxi, Jiangsu, PR China.

Textile wastewaters generated from different stages of textile processing contain various toxicants or pollutants that are seriously harmful to natural aquatic environment when released without proper treatment. Although there are different methods, which can be adopted for the treatment of textile wastewater, biological approaches are considered as environmentally friendly, low cost and effective methods over other physico-chemical methods. In the present study, simulated textile wastewater (STW) prepared by mixing of three popular acid dyes (Acid blue 204, Acid red 131 and Acid yellow 79) in synthetic wastewater was studied for the decolourization and removal of degradable organic in the laboratory scale Upflow Anaerobic Sludge Blanket Reactor system with anaerobic granular sludge for about five months at different organic and dye loading rates. The colour removal mechanisms under inaerobic treatment were also examined since microbial colour removal occurs basically in two ways namely biological degradation, which is more important in textile wastewater treatment, and adsorption of dye molecules onto microbial biomass. Chemical oxygen demand (COD) removal of acid red 131 (AR131) containing STW was about 80% at 300 mg/l dye concentration and it was over 89% in acid yellow 79 (AY79) dye containing STW under studied conditions. Although acid blue 204 (AB204) showed a little inhibition over methanogenic consortia, about 93% of COD removal was observed at 100 mg/l dye concentration. Colour removal of AR131 dye containing STW was 95% and it was credited to biodegradation. Treatment of STW prepared using AY79 showed 95% colour removal owing to biodegradation while AB204 was quite resistant to biodegradation by anaerobic microorganisms. Observed colour removal was merely due to the adsorption of dyes onto microbial granules. Even though a little accumulation of volatile fatty acid (VFA) was observed in increased dye concentrations, the detected values of VFA, alkalinity and pH showed that those values were in the range of desirable limits of anaerobic process. It seems that AR131 and AY79 can be decolourized almost completely by UASB reactor system while AB204 cannot be decolourised since all colour removal attributed to adsorption of dye onto microbial granules. It can be concluded that anaerobic technology can be used for the treatment of textile wastewater containing different dyes as an alternative method over other methods. However, further study of UASB reactor for the treatment of real textile wastewater is suggested to find out matrix effect of other chemicals present in real textile wastewater before application to the real world situations.

## <u>053</u>

## Status of heavy metal pollution in the Lunawa lagoon

W R M N K Wickramasinghe<sup>1</sup>, P N Dayawansa<sup>1</sup> and M D P de Costa<sup>2</sup>

<sup>1</sup>Department of Zoology, University of Colombo, Sri Lanka. <sup>2</sup>Department of Chemistry, University of Colombo, Sri Lanka.

Distribution of five types of heavy metals in the Lunawa Lagoon (Colombo District) was investigated from April to June 2006. Water and bottom sludge samples were obtained at fortnight intervals from nine sampling stations of the lagoon including three drains (Northern, Eastern and Uyana). Water samples were preserved by adding Conc. HNO<sub>3</sub> (Analytical Grade) to adjust the pH to < 2 and bottom sludge samples were treated by 'Wet Ashing Method' before analysis. Concentrations of Cu,

Proceedings of the International Forestry and Environment Symposium 2006 of the Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Sri Lanka