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Abstract— This paper presents a comprehensive review of 

vibration analysis techniques for fault detection in internal 

combustion engines (ICEs). The use of vibro-acoustic signals 

has been pivotal in diagnosing complex issues related to ICE 

sub-components such as the pistons, bearings, and 

turbochargers. Traditional signal analysis methods, including 

Fourier transforms, wavelet analysis, and empirical mode 

decomposition (EMD), have been evaluated alongside 

advanced computational techniques like support vector 

machines (SVM) and artificial neural networks (ANN). The 

findings suggest that combining multiple domains of signal 

analysis (time, frequency, and angular domains) offers a robust 

mechanism for detecting and diagnosing faults. Furthermore, 

the potential integration of these techniques with real-time 

monitoring systems is discussed. 

Keywords—component, formatting, style, styling, insert (key 

words) 

I. INTRODUCTION

Internal combustion (IC) engines are crucial in various 
applications, from automotive systems to industrial machinery. 
Their reliability and efficiency depend on mechanical integrity, 
with vibration serving as a key indicator of potential faults. 
Abnormal vibrations, caused by factors like misalignment, 
imbalance, or component wear, can lead to mechanical failures 
and costly downtime if unaddressed. 

Advancements in sensor technology and data processing 
have underscored the importance of precise vibration 
monitoring, particularly using accelerometers, which offer high 
sensitivity and real-time data. Triangulating abnormal vibration 
sources with multiple accelerometers enhances fault diagnosis 
accuracy in IC engines [1]. Vibration analysis interprets signals 
generated during engine operation, revealing misalignments, 
imbalances, and defects, allowing engineers to detect wear early 
and prevent breakdowns [2], [3].  

This paper reviews state-of-the-art methods for abnormal 
vibration triangulation in IC engines, focusing on the use of 
multiple accelerometers for precise localization. It explores 
recent advances, such as novel signal interpretation algorithms, 
machine learning for pattern recognition, and the integration of 
these techniques into modern diagnostics. Aimed at researchers 
and practitioners, this review provides insights into both 
theoretical and practical aspects of vibration analysis, promoting 
further innovation in this essential area of mechanical 
engineering. 

A. Challenges in Localizing Abnormal Vibrations

Localizing abnormal vibrations in internal combustion

engines (ICEs) presents several challenges due to the 

complexity of both mechanical and acoustic behaviors. ICEs 

generate vibrations from multiple sources, including mechanical 

impacts like piston slap, valve clearances, and gear vibrations, 

along with combustion noise and aerodynamic noise from 

components such as fans and ducts. These overlapping vibro-

acoustic signals make it difficult to isolate and accurately 

identify the origin of abnormal vibrations [4]. Additionally, 

these signals are often non-stationary and transient, meaning 

they change with engine speed and time, complicating analysis. 

Traditional signal processing methods that work for stationary 

signals may not suffice, necessitating the use of more advanced 

techniques like Short-Time Fourier Transform (STFT) and 

wavelet transforms [5]–[7]. Another significant challenge is the 

presence of background noise from both the engine and the 

environment, which can mask the signals of interest and make it 

harder to detect and locate abnormal vibrations [8]–[10]. 

Moreover, vibrations in ICEs can propagate through multiple 

paths—airborne or structure-borne—further complicating the 

task of localization [11], [12]. In addition, the overlap of 

vibration signals from closely operating engine components 

such as pistons, valves, and injectors can make it difficult to 

differentiate between normal and faulty conditions. To address 

these challenges, techniques like cyclostationarity, spectral 

kurtosis, and wavelet transforms have proven effective in 

detecting and localizing faults in such complex environments. 

B. Research Design

This research adopts a Systematic Literature Review (SLR).

This research employs a Systematic Literature Review (SLR) to 

comprehensively gather, evaluate, and synthesize studies on 

abnormal vibration triangulation and vibration analysis in 

internal combustion (IC) engines. The SLR method provides an 

exhaustive overview of the research landscape, identifying key 

trends and knowledge gaps, thereby enhancing the reliability 

and validity of conclusions. The process includes formulating 

research questions, developing a structured search strategy, and 

rigorously screening and selecting relevant, high-quality 

studies. The selected studies are then thematically and 

comparatively analyzed to gain insights into vibration analysis 

and abnormal vibration localization in IC engines. 

II. LITERATURE REVIEW

A. Fundamentals of Vibration Analysis in IC Engines and its

impact

Vibrations in internal combustion (IC) engines stem from
multiple sources, including mechanical imbalances, combustion 
factors, and structural resonances, each impacting the engine’s 
overall vibration profile. Mechanical imbalances, such as 
uneven mass distribution in rotating components like the 
crankshaft and flywheel, generate centrifugal forces causing 
vibrations that affect performance and lead to long-term wear 
[13]–[15]. Combustion-related vibrations result from pressure 
fluctuations due to uneven fuel-air mixtures or ignition issues, 
with phenomena like knocking producing sharp pressure spikes 
and high-frequency vibrations [16]–[18]. Structural resonances 
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occur when engine components resonate at their natural 
frequencies, amplifying vibrations and risking fatigue or 
failure[19], [20]. 

Other specific events, like piston slap and valve train 
dynamics, add to the vibrational behavior. Piston slap arises 
when pistons contact cylinder walls, indicating potential wear, 
while valve train dynamics from camshafts and gears introduce 
periodic vibrations, affecting both performance and noise levels 
[21], [22]. Similarly, the dynamics of the valve train, which 
includes the operation of camshafts, valves, and timing gears, 
can introduce periodic vibrations, especially if components are 
worn or improperly adjusted. These vibrations not only affect 
engine performance but also contribute to the overall noise 
levels, which can be a significant concern in both automotive 
and industrial applications [23], [24]. 

Abnormal vibrations significantly impact engine efficiency, 
safety, and longevity. Excessive vibrations disrupt smooth 
operation, increase fuel consumption, and reduce power output. 
For instance, an imbalanced crankshaft can misalign the power 
transmission system, lowering engine efficiency [1], [25]. For 
example, excessive vibrations caused by an imbalanced 
crankshaft can lead to misalignment in the power transmission 
system, ultimately reducing the overall efficiency of the engine 
[26], [27]. Continuous vibrations accelerate wear, particularly 
on bearings, seals, and fasteners, leading to fatigue failure and 
potentially costly repairs [28]–[30]. High vibration levels also 
pose safety risks, as loose fasteners can lead to component 
detachment or, in resonance cases, structural failure, which is 
especially hazardous in high-speed applications [31]–[33]. 

Vibrations correlate with noise, both as a byproduct and 
diagnostic tool, signaling issues like misfiring or misalignment. 
Early intervention can prevent serious damage, making regular 
vibration monitoring essential for maintenance [34], [35]. 
Persistent abnormal vibrations shorten engine lifespan due to 
cumulative component damage, underscoring the importance of 
design, maintenance, and monitoring to enhance durability and 
performance [36], [37]. 

Fig. 1. Stage I of bearing defect progression across frequency zones 

The understanding of the sources and impacts of vibrations in IC 

engines is crucial for the development of effective diagnostic 

and maintenance strategies. The next section will explore the 

principles of triangulation techniques used for the precise 

localization of these vibration sources within the engine. 

The four stages of bearing failure of an IC engine are illustrated 

in the fig. 1 – fig. 4. Stage I (fig. 1) represents the initial phase 

where defects are microscopic, undetectable by noise or 

temperature but identifiable through high-frequency methods 

like Shock Pulse Method (SPM), primarily in the ultrasonic 

range (~20 kHz). In Stage II (fig. 2), the defect grows, causing 

increased high-frequency energy due to excitation of the 

bearing's natural frequency, generally above 5 kHz. Envelope 

analysis can detect these vibrations, though it requires advanced 

computation. Stage III (fig. 3)  is characterized by prominent 

low-frequency patterns, such as Ball Pass Frequency of the 

Outer race (BPFO), Ball Pass Frequency of the Inner race 

(BPFI), and Ball Spin Frequency (BSF), along with sidebands 

indicative of severe damage. This stage is ideal for predictive 

maintenance, as the bearing is damaged but not yet critically. 

Finally, Stage IV (fig. 4) marks advanced deterioration, with 

distinct bearing defect frequencies replaced by random 

vibrations and looseness in the system. At this point, continued 

operation risks catastrophic failure, making immediate bearing 

replacement critical. 

Fig. 2. Stage II of bearing defect progression across frequency zones 

Fig. 3. Stage III of bearing defect progression across frequency zones 

Fig. 4. Stage IV of bearing defect progression across frequency zones 

B. Principles of Triangulation for Vibration Source

Localization

Localizing vibration sources in internal combustion (IC)
engines is essential for effective condition monitoring and fault 
diagnosis, enabling early detection of issues to prevent severe 
damage and extend engine life. Triangulation techniques are 
particularly effective, as they accurately determine vibration 
source locations by analyzing data from multiple sensors 
positioned around the engine. Fig. 5 illustrates a triangulation-
based localization method where sensor nodes estimate location 
by measuring distances from three anchor nodes. 



 

Fig. 5. Triangulation-based Localization [38] 

C. Overview of Triangulation Techniques 

Triangulation techniques are based on the geometric principles 

of determining a point's location by measuring angles or 

distances from known points. In the context of vibration 

analysis, triangulation involves using data from multiple 

sensors to infer the location of a vibration source within the 

engine. 

• Time Difference of Arrival (TDOA): One of the most widely 

applied triangulation methods in vibration analysis is the 

Time Difference of Arrival (TDOA). TDOA calculates the 

difference in arrival times of a vibration wave at different 

sensors to estimate the location of the vibration source. This 

method assumes that the vibration propagates at a constant 

speed through the engine's structure. TDOA is particularly 

useful in environments where vibrations travel through 

uniform materials, as it can accurately locate sources even in 

complex mechanical systems [39]–[41]. However, the 

accuracy of TDOA can be affected by factors such as 

reflections, refractions, and varying material properties 

within the engine, which can distort the signal's path. 

 

Fig. 6. Analysis of the TDoA of noise detection from top and bottom 

microphones for identify the location of the fingure on a mobile phone 

display [42]. 

• Amplitude-Based Triangulation: Another approach is 

amplitude-based triangulation, which uses the relative 

amplitudes of vibration signals received by different sensors 

to estimate the source's location. The underlying principle is 

that the amplitude of a vibration signal decreases as the 

distance from the source increases. By comparing the 

amplitudes recorded by multiple sensors, it is possible to 

infer the position of the vibration source. This method is 

advantageous in environments where the medium's 

properties might cause variations in signal propagation 

speed, as it relies on amplitude rather than time-based 

measurements [43]–[47]. However, amplitude-based 

methods are sensitive to environmental noise and signal 

attenuation, which can lead to inaccuracies if not properly 

accounted for. 

• Phase Difference Methods: Phase difference methods involve 

measuring the phase shifts of a vibration signal as it 

propagates through the engine structure. The phase 

difference between signals received by different sensors is 

used to determine the relative positions of the sensors with 

respect to the vibration source. These methods are 

particularly effective in detecting high-frequency vibrations, 

where phase shifts are more pronounced and can be 

measured with higher accuracy [48]–[50]. However, phase 

difference methods require precise sensor calibration and are 

highly sensitive to changes in environmental conditions, such 

as temperature fluctuations, which can affect the speed of 

sound and, consequently, the accuracy of the localization. 
 

III. SIGNAL PROCESSING TECHNIQUES IN VIBRATION 

TRIANGULATION 

Signal processing is a critical component in the analysis of 
vibration data for the purpose of triangulation and source 
localization in internal combustion (IC) engines. The complex 
nature of engine vibrations, which often consist of overlapping 
signals from multiple sources, necessitates the use of advanced 
processing techniques to accurately isolate and identify the 
origin of specific vibrations. This section explores the various 
signal processing methods employed to enhance the quality of 
vibration data and improve the accuracy of triangulation in IC 
engines. Fig. 7 present the general stages of signal processing of 
vibration data used in vibration detection systems. 

 

Fig. 7. General stages of signal processing of vibration data [51]. 

A. Noise Reduction 

Noise reduction is a crucial step in processing vibration 
signals, especially for IC engines, where noise can stem from 
environmental factors, mechanical interference, and electrical 
disturbances. Effective noise reduction techniques are vital to 
ensure that vibration signals accurately represent the engine's 
mechanical condition, free from distortion by extraneous 
elements. 

Several filtering techniques are commonly used for noise 
reduction in vibration analysis. The Butterworth filter, known 
for its flat frequency response in the passband, is widely used to 
remove high-frequency noise while preserving the essential 
components of the vibration signal [52], [53]. Similarly, the 
Kalman filter is employed to minimize the impact of random 
noise on the signal by providing an optimal estimate of the 
underlying signal based on a series of measurements over time 
[54], [55]. This filter is particularly effective in dynamic 
environments where the noise characteristics may change over 
time, such as in varying engine operational conditions. 



 

Fig. 8. Comparision between raw signal and filtered signal of vibration 

data [56]. 

Fig. 8 illustrates the process of acquiring and filtering 
vibration signals. The left side shows the raw, noisy vibration 
signal and its frequency spectrum obtained via FFT, revealing 
multiple frequency components. The right side displays the 
filtered signal within the 300 Hz to 10 kHz range, with its FFT 
spectrum showing clearer frequency peaks. This process 
underscores the importance of filtering for accurate vibration 
analysis. 

Another advanced technique for noise reduction is the 
Wavelet Transform. Unlike traditional filtering methods that 
operate in the frequency domain, the wavelet transform analyzes 
the signal in both time and frequency domains, allowing for the 
identification and removal of noise components that are 
localized in both time and frequency [57]. This makes the 
wavelet transform particularly effective in handling non-
stationary signals, which are common in IC engines where the 
vibration characteristics can change rapidly due to varying loads 
and speeds. 

B. Feature Extraction 

Feature extraction involves identifying and quantifying key 
characteristics of vibration signals relevant to fault detection and 
localization. Effective feature extraction enhances the accuracy 
of vibration analysis, aiding in the identification of specific 
engine faults. 

In the time domain, common features extracted from 
vibration signals include Root Mean Square (RMS), peak 
amplitude, and crest factor. These features provide insight into 
the overall energy and intensity of the vibrations, which can be 
indicative of the presence and severity of faults [58], [59]. For 
example, an increase in RMS value may indicate an imbalance 
in the rotating components of the engine, while a high peak 
amplitude might suggest a sudden impact or mechanical failure. 

In the frequency domain, Fast Fourier Transform (FFT) is 
one of the most commonly used tools for converting time-
domain signals into the frequency domain. FFT allows for the 
identification of dominant frequencies within a vibration signal, 
which correspond to various mechanical issues within the 
engine [60]–[62]. For example, specific frequency peaks may 
indicate the presence of misalignment, imbalance, or bearing 
defects. The FFT is particularly useful for identifying periodic 
vibrations that result from rotating components within the 
engine. 

Additionally, the Short-Time Fourier Transform (STFT) and 
Wavelet Transform provide time-frequency representations of 
the signal, enabling the analysis of how the vibration 
frequencies evolve over time. This is particularly useful for 
detecting transient faults that may not be evident in a purely 
frequency-domain analysis [61]. These advanced techniques are 

essential for capturing the dynamic behavior of engine 
vibrations under varying operating conditions. 

C. Advanced Signal Processing 

Advanced signal processing techniques, including machine 
learning and AI, are increasingly used in vibration analysis to 
improve fault detection and localization. Machine learning 
models like Support Vector Machines (SVM) and Neural 
Networks classify vibration patterns and predict faults based on 
historical data, learning from large datasets to identify subtle 
patterns undetectable by traditional methods [63]. Principal 
Component Analysis (PCA) reduces vibration data complexity 
by transforming features into principal components that capture 
key variations, preserving essential information for fault 
detection [64].  

AI-driven techniques, especially Deep Learning models 
such as Convolutional Neural Networks (CNNs), have 
demonstrated promise in automatically extracting and analyzing 
vibration features, allowing for accurate fault diagnosis suited to 
real-time monitoring and predictive maintenance in IC engines 
[65].  

 

Fig. 9. Comparison of classification accuracy under different noisy 

environment [66]. 

Fig. 9 compares classification accuracy of various fault 

diagnosis models under different noise levels (SNR from -4 dB 

to 10 dB), illustrating that traditional methods like FFT-based 

SVM and Multi-Layer Perceptron (MLP) suffer accuracy drops 

with increasing noise, while the Wide First-layer Kernel Deep 

Convolutional Neural Network (WDCNN) maintains higher 

accuracy due to its wide kernels, which effectively suppress 

high-frequency noise. AdaBN, a domain adaptation method, 

further enhances WDCNN’s robustness, showing high accuracy 

across noise levels and emphasizing the value of domain 

adaptation for noisy conditions [66]. 

D. Challenges and Limitations in Current Research 

Despite advancements in vibration source localization for IC 
engines, technical and practical challenges limit the consistency 
and reliability of triangulation techniques in real-world 
applications, impacting their broader adoption in fault diagnosis 
systems. 

One major technical challenge is sensor limitations. 
Accelerometers often struggle in harsh engine environments of 
extreme temperatures, pressure, and mechanical stress, as many 
lack durability for long-term performance. Their sensitivity and 
frequency range can also restrict detection of subtle anomalies, 
causing high-frequency fault-indicative vibrations to go 
undetected [67], [68]. Environmental noise, originating from 
combustion, mechanical interactions, and auxiliary systems, 
complicates data collection, making it difficult to separate fault 
signals from operational noise, even with advanced signal 
processing methods [69]. Signal attenuation, especially in 
engines with complex geometries or distant sensors, reduces 



vibration signal amplitude as it travels through components, 
complicating fault detection in remote areas [70].  

Practical challenges also hinder real-world implementation. 
High-precision sensors capable of withstanding engine 
conditions are costly, and multiple sensors are required for 
accurate localization, raising costs further [71]. 

Deployment is complex, needing precise sensor placement, 
calibration, and ongoing maintenance, with phase difference 
techniques highly sensitive to placement accuracy. Scalability 
remains a concern in larger engines, like marine or industrial 
applications, where more sensors are needed, increasing 
installation and maintenance costs and logistical complexity. 
Additionally, the durability of sensors is a constraint; they 
degrade over time under mechanical stress, heat, and corrosive 
environments, requiring frequent recalibration or replacement, 
which is costly and logistically challenging, especially where 
minimizing downtime is crucial. 

IV. DISCUSSION 

A. Synthesis of Key Findings 

The review of triangulation techniques for vibration source 
localization in IC engines highlights advancements and 
challenges. Key findings emphasize the importance of sensor 
placement; positioning sensors near critical areas like the 
crankshaft or exhaust manifold enhances fault detection for 
issues such as misalignments or misfires. Strategic 
configurations, especially in complex engine geometries like 
multi-cylinder or turbocharged engines, also help reduce signal 
attenuation and reflection. Additionally, signal processing 
techniques, including Fast Fourier Transform (FFT), Wavelet 
Transform, and Kalman filtering, effectively enhance signal 
quality, isolating fault-related vibrations from noise and 
enabling time- and frequency-domain analysis for detecting 
transient and high-frequency faults. The integration of machine 
learning techniques, like Support Vector Machines (SVM) and 
deep learning, automates feature extraction and improves fault 
classification accuracy. 

B. Implications for Industry 

Improved triangulation methods in IC engines offer 
significant benefits for the automotive and manufacturing 
industries by enabling earlier fault detection, reducing 
downtime, maintenance costs, and preventing catastrophic 
failures. More accurate fault localization allows for targeted 
maintenance, extending engine life and avoiding unnecessary 
repairs. Integrating these methods into real-time monitoring 
systems supports predictive maintenance, essential for high-
performance engines in sectors like aerospace, marine, and 
heavy machinery. Additionally, scalable solutions for large 
industrial engines, as noted in recent studies, benefit industries 
such as marine transport and power generation, where reliable, 
effective condition monitoring minimizes downtime and yields 
economic advantages. 

C. Gaps in Current Research 

Despite the significant advancements, several research gaps 
have been identified that need further exploration. One notable 
gap is the integration of new sensor technologies. While current 
sensors exhibit limitations in high-temperature and high-
vibration environments, advances in MEMS (Micro-Electro-
Mechanical Systems) and fiber-optic sensors offer promising 
avenues for more resilient and precise vibration monitoring in 
IC engines. Research into these emerging sensor technologies is 
still in its early stages and has yet to be widely adopted in 
vibration triangulation studies. 

Another gap lies in the need for standardized methodologies. 
Although various triangulation techniques have been developed, 
there is little consensus on best practices for different engine 
types or operational environments. The effectiveness of 
techniques like TDOA, amplitude-based triangulation, and 
phase difference methods varies significantly based on the 
engine’s configuration, size, and operating conditions. A 
standardized framework for sensor placement, calibration, and 
signal processing across different applications would help 
streamline the adoption of these techniques in industry. 

D. Future Research Directions 

Future research should focus on creating adaptive sensor 
systems that adjust to changing engine conditions, with self-
calibrating sensors to reduce issues like sensor drift and 
positioning errors. Exploring hybrid triangulation methods, such 
as combining TDOA and phase difference techniques, could 
also enhance accuracy in complex settings. Additionally, AI-
driven predictive maintenance systems that merge real-time 
vibration monitoring with historical data could improve fault 
prediction. Machine learning models that learn from ongoing 
engine data would boost diagnostic robustness and accuracy, 
particularly with large datasets and intricate engine setups. 

E. Limitations of the Review 

This review covers a wide range of recent research on 
triangulation techniques for vibration source localization in IC 
engines but has several limitations. It primarily focuses on 
vibration analysis, excluding in-depth discussion of other 
diagnostic methods like thermal or acoustic monitoring, which 
may limit the broader applicability of some findings. 
Additionally, as the field of vibration analysis evolves quickly 
with advancements in sensor technology, signal processing, and 
machine learning, the review may not fully reflect the latest 
innovations, which could soon impact current conclusions. 

V. CONCLUSION 

This review offers a comprehensive analysis of triangulation 
techniques for localizing vibration sources in internal 
combustion (IC) engines. Key findings emphasize the critical 
role of optimal sensor placement and advanced signal 
processing techniques—such as Fast Fourier Transform (FFT), 
Wavelet Transform, and machine learning algorithms—in 
enhancing diagnostic accuracy and reliability. Various methods, 
including Time Difference of Arrival (TDOA), amplitude-based 
triangulation, and phase difference approaches, were compared, 
showcasing their differing effectiveness depending on engine 
configurations and conditions. 

The review also highlighted challenges such as sensor 
limitations, signal attenuation, environmental noise, and 
practical constraints like cost and scalability. Although there 
have been notable advancements, technical and practical 
challenges remain, requiring further research to fully realize the 
potential of vibration triangulation for IC engine diagnostics. 

A. Recommendations 

Based on this review’s findings, the following 
recommendations are proposed for industry professionals and 
researchers: 

1. Prioritize Sensor Placement: Effective sensor placement 
is crucial for accurate vibration source localization. 
Industry professionals should focus on deploying sensors 
strategically near high-impact areas, such as the crankshaft 
and cylinder head, where vibrations commonly originate. 
Researchers should investigate innovative placement 
strategies suited to specific engine geometries and 
configurations. 



2. Leverage Advanced Signal Processing: FFT, Wavelet 
Transform, and machine learning-based feature extraction 
techniques should be incorporated into vibration 
diagnostics. These methods are effective in isolating fault 
signals from noise and detecting early-stage issues that 
might otherwise be missed. 

3. Adopt Hybrid Techniques: Combining TDOA, 
amplitude-based, and phase difference methods can 
enhance diagnostic robustness and accuracy across various 
operating conditions, overcoming limitations inherent to 
individual techniques. 

4. Invest in Sensor Technology Development: Industry 
leaders should support next-generation sensors, such as 
MEMS and fiber-optic types, which are durable in harsh 
engine environments while maintaining high sensitivity and 
precision. Such sensors are essential for enhancing 
durability and diagnostic accuracy. 

5. Implement Predictive Maintenance Systems: Integrating 
real-time vibration monitoring with machine learning in 
predictive maintenance systems can reduce downtime, cut 
maintenance costs, and prevent severe failures through 
early fault detection. 

The need for continued research in vibration triangulation 
for IC engines is paramount. As engine designs become 
increasingly complex, precise and reliable diagnostics will be 
vital. Technological advancements in sensors, signal processing, 
and artificial intelligence show promise in overcoming current 
challenges. Addressing these will help improve IC engine 
efficiency, reliability, and lifespan, fostering innovation in 
diagnostics and maintenance. 

In conclusion, while significant progress has been made in 
vibration-based diagnostics for IC engines, much work remains. 
Interdisciplinary collaboration among mechanical engineers, 
data scientists, and sensor technologists will be essential to 
advance this research and support its successful application 
across industries. 
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