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ABSTRACT 

 

Fourier transforms initially used for the solution of problems in mathematical physics has today become a 

powerful tool of data analysis in wide spectrum of disciplines ranging from electrical engineering to social 

sciences. Its widespread applications can be attributed to the development of discrete Fourier transforms in 

middle part of the last century and subsequent development of fast Fourier transform algorithms which made 

its numerical implementation possible using digital computers. This paper reviews the limitations of the 

Fourier transform technique and associated problems and provide suggestions to overcome them.    
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1. INTRODUCTION  

 

Physical quantities, either continues or sampled, 

that display spatial or temporal variations are 

generally referred to as signals. Discipline that 

deals with the acquisition and analysis of 

signals together with various operations carried 

out on them is known as signal processing. 

Some of the operations that signals are often 

subjected to are sampling, noise reduction, and 

feature extraction. Signal processing which was 

first developed as a branch of mathematics now 

has a wide spectrum of applications in 

disciplines such as electrical engineering, 

telecommunication, geophysics, meteorology, 

biological and medical sciences and even in 

social sciences. 

 

One of the most powerful and time 

tested tools of signal processing is the Fourier 

transform method which includes Fourier 

analysis and synthesis. Famous French 

mathematician Jean-Baptiste Joseph Fourier in 

1822 provided an elegant solution to the heat 

conduction equation for the first time in history 

making use of orthogonal properties of sine and 

cosine trigonometric functions. This method 

which originally introduced as a strategy of 

solving second order partial differential 

equations soon became useful tool of analyzing 

signals. Its importance was enhanced by several 

orders with the advent of discrete Fourier 

transforms during the middle part of the last 

century enabling the use of digital computers 

for signal processing (Bracewell, 1965; 

Brigham, 1974).  

 

Fourier analysis allows decomposition 

of a signal into a large number of sinusoids with 

frequencies that are integer multiples of a 

fundamental frequency. Therefore this 

technique is widely used for the purpose of 

identifying periodicities in data. It is well 

known that the knowledge of periodicities in 

data is useful in making decisions in disciplines 

such as epidemiology (Zhang et al.,2014), 

climatology (Duchon and Hale, 2011), 

economics (Cherubini et al., 2009), medicine 

(Tomkins, 2000) and in environmental sciences.  

 

Initially this technique was widely used 

by engineers, physicists and others who are 

having a strong background in mathematics. 

However, today due to the availability of 

computer packages that carry out the task of 

performing Fourier analysis, number of workers 

using this technique has increased by several 

folds.  Some of them, especially those who are 

coming from non-mathematical backgrounds, 

use this technique without realizing its 

limitations and related problems. Application of 

this method without understanding its 

limitations may lead to erroneous results which 

are very often mathematical artifacts rather the 

solution to the problem that we are interested 

in. Therefore it is extremely important for those 

who are using this technique to have a good 

understanding of these limitations and 

problems. This paper reviews these limitations 

and related problems and provides suggestions 

on how to overcome them. Limitations that are 

being discussed here can be found in many text 

books which are generally meant for those who 

are having a strong background in mathematics. 

In this paper these limitations are presented and 

discussed so that users from non-mathematical 

backgrounds can easily be understood. 
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2.  FOURIER TRANSFORMS, DISCRETE 

FOURIER TRANSFORMS AND FAST 

FOURIER TRANSFORM ALGORITHMS 

 

2.1  Fourier Transforms:  

 

As mentioned earlier, the Fourier transform is a 

major tool that has numerous applications in the 

field of signal processing. This is also used in 

many other fields of science as a mathematical 

tool to transform a waveform or a function in 

time (or spatial domain) to a function in 

frequency domain (or wave number domain). 

The frequency domain function comprises an 

infinite number of sine and cosine terms. 

Fourier transform of a spatial domain 

continuous function f(x) which is bounded and 

piecewise continuous is defined as, 

𝐹 𝑓 =  𝑓(𝑥)𝑒−2𝜋𝑖𝑓𝑥
∞

−∞

𝑑𝑥 

Inverse Fourier transform is defined as, 

𝑓 𝑥 =  𝐹 𝑓 𝑒2𝜋𝑖𝑓𝑥

∞

−∞

𝑑𝑓 

The frequency f  in the above expressions can 

be replaced by the wave number k (where, 

 

𝑓 =
𝑘

2𝜋
) . 

 

It is clear from the above expression for 

the Fourier transform that it is a complex 

function in general and its real part gives the 

amplitudes of its cosine components while the 

imaginary part gives the amplitudes of its sine 

components. It can be easily understood that 

real part of the Fourier transform of a real 

function is a symmetric function while that of 

the imaginary part is an anti-symmetric 

function. 

 

 

2.2 Discrete Fourier transforms: 

 

The continuous Fourier transform converts a 

spatial or time domain signal of infinite 

duration into a continuous spectrum composed 

of an infinite number of sinusoids. In real world 

problems we always deal with finite duration 

signals that are discretely sampled. For such 

situations the Fourier transform definition has 

to be suitably modified. A Fourier transform 

modified to suit discrete functions are called a 

discrete Fourier transform (DFT) and relevant 

definitions and expressions are given below 

(Bracewell, 1965; Brigham, 1974; Press et al. 

1992 and Terrell and Shark, 1996). 

 

Let us consider a spatial domain 

function sampled at N points xj (where, 

j=0,1,..,N-1). Fourier transform and the Inverse 

Fourier transform of the sampled function are 

defined as 

𝑋𝑘 =  𝑥𝑗

𝑁−1

𝑗=0

𝑒−2𝜋𝑖𝑗𝑘 /𝑁 

and 

𝑥𝑗 =
1

𝑁
 𝑋𝑘  

𝑁−1

𝑘=0
𝑒2𝜋𝑖𝑗𝑘 /𝑁 

 

The above expression contains the most 

common normalization factor, 1/N. However, in 

different computational packages different 

normalization factors have been used. For 

example, the Mathematica Computer Algebra 

package uses   1
 𝑁

   as the normalization 

factor. 

 

2.3 Fast Fourier Transform Algorithm:  

 

The Fast Fourier transform (FFT) is an efficient 

algorithm to compute the discrete Fourier 

transform (DFT) and its inverse. It is an 
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important algorithm for solving a large class of 

physical problems such as those in image 

processing, seismology and potential field 

studies in geophysics and market trend analysis 

in financial mathematics. A DFT transforms a 

data vector comprising a sequence of data into 

components of different frequencies. 

Computing it directly from the definition is 

often far too slow to be practical, especially 

when the vector has a large number of data 

values. The FFT is only a way to compute the 

same result more rapidly. Computing a DFT of 

a vector of N points, using the definition given 

above, requires O(N
2
) arithmetical operations, 

while an FFT can compute the same result only 

in O(N log2 N) operations. The Cooley and 

Tukey algorithm (1964) is the first ever FFT 

algorithm that can be seen in the published 

literature. This algorithm requires N to be a 

number that can be expressed as a power of 2. It 

re-expresses a discrete Fourier transform of a 

vector of length N in terms of two smaller 

DFTs of lengths N1 and N2 (where,N=N1N2) 

and reduces the computation time to O(N log2 

N). Some modern implementations (Press et al. 

1992) of the FFT allow computation of FFT of 

a vector of any arbitrary length, not just those 

that are powers of two or the products of only 

small primes. 

 

3. Limitations and Practical Problems 

Related to the Fourier Transforms 

 

When a signal is studied by using numerical 

techniques, it is necessary to separate out the 

specific part of the signal that we are interested 

in (truncation of the signal) and sample it in an 

appropriate manner. Let h(x) be a function of x 

and assume it has been sampled evenly at 

intervals of Δ. The sampled function can be 

expressed as, 

 ℎ𝑛 = ℎ 𝑛∆  where, n=0,1,2,3,……….N-1 

 

In the above expression Δ is the 

sampling interval and n/(NΔ), (where n=-

N/2,….,N/2) is referred to as frequency. The 

highest frequency  1 2∆  has a very special 

significance (which will be discussed later) and 

is known as the Nyquist frequency. 

 

Both truncation and sampling reduce 

information contained in the signal. Hence in 

DFT we only estimate the Fourier transform of 

the function from a finite number of its sampled 

points. Truncation and sampling cause loosing 

of information as mentioned earlier creating 

problems such as aliasing, truncation error, 

Gibb’s phenomenon and high frequency 

instabilities. 

 

3.1 Sampling Theorem and Aliasing:  

 

The success of the branch of knowledge that we 

referred to as digital signal processing 

completely depends on an important theorem in 

mathematics called sampling theorem. The 

sampling theorem states that a band limited 

signal can be completely recovered from its 

samples provided it is sampled at a rate at least 

equal to twice the Nyquist frequency (fc). 

 

If the signal contains frequencies higher 

than the Nyquist frequency, then the effect of 

the presence of such frequencies is reflected in 

the lower frequencies (spectral densities of 

higher frequencies are reflected in those of the 

lower frequencies) and this phenomenon is 

known as the aliasing effect. Press et al. (1992) 

illustrated this phenomenon for a time domain 

function and it is reproduced here for a spatial 

domain function with appropriate changes 

(Figure 1). 
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Figure 1: Illustration of aliasing due 

insufficient sampling. The continuous function 

shown in (a) is non zero only for a finite 

interval of length X. It follows that its Fourier 

Transform, whose modulus is shown 

schematically in (b), is not band limited but has 

finite amplitudes for all frequencies. If the 

original function is sampled with a sampling 

interval ∆, as in(a), then the Fourier Transform 

(c) is defined only between plus and minus of 

the Nyquist critical frequency. Power outside 

that range is folded over or “aliased”  into the 

range  0 − 1
2∆  . This effect can be 

eliminated only by low pass filtering the 

original function before sampling. 

 

3.2 High Frequency Instabilities and 

Filtering:  

 

Almost all signals that we come across in the 

real world, either in time domain or in spatial 

domain, are contaminated with noise. These 

may be stemming from a variety of sources. 

Errors generated by inherent limitations of the 

measuring instrument and human errors are two 

obvious sources of noise. In addition to the 

above sources, there can be other sources of 

noise that are specific to the nature of the signal 

that we processing. To illustrate this let us 

consider a gravity or magnetic anomaly (signal) 

caused by a deep seated structure in the crust of 

the Earth. If we are interested in interpreting 

this anomaly, effect due to all the other 

structures are considered as noise. For example 

anomalies due to near surface narrow intrusive 

bodies are considered as noise as such 

anomalies will obliterate the anomaly or the 

signal that we are interested in. Most of the 

noise associated with a signal has short 

wavelengths or high frequencies. When a signal 

is subjected to frequency domain manipulations 

such as downward continuation, 

psudogravimetric transformation (Bott and 

Tantrigoda, 1986; Tantrigoda, 1982) or 

modeling in terms of a subsurface body (Parker, 

1973; Rodrigo, 2012), there will be an 

enhancement of high frequency components 

including the noise component. Sometimes the 

amplification of the high frequency components 

is so pronounced and they deform the signal 

causing enormous problems in their analysis. 

This effect is known as high frequency 

instability and can be reduced to a reasonable 

level employing suitable filters. Tapering the 

frequency domain signal or application of 

cosine, Hanning or Hamming filters will reduce 

the high frequency instability to a reasonable 

level. 
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The Cosine Taper window, H(k), that is 

used to eliminate high frequency components is 

defined in the following manner: 

 

𝐻 𝑘 

=  

1

2
 1 + cos  

𝜋 𝑘 − 𝑘𝑙 

 𝑘ℎ − 𝑘𝑙 
          𝑘𝑙 ≥ 𝑘 > 𝑘ℎ

   1                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

where, k defines the range of the filter 

in the interval [kl,kh] and wave numbers of the 

signal. The filter function is defined for both 

positive and negative frequencies. Illustration 

of cosine window is provided in the Figure 2. 

 

 

 

 

 

 

Figure 2: Cosine Taper window. 

 

The Hanning filter is defined in the 

wave number domain as follows and it has been 

illustrated in Figure 3. 

 

𝐻 𝑘 =  

1

2
 1 + cos  

𝜋𝑘

𝑘𝑚

          − 𝑘𝑚 ≤ 𝑘 ≤ 𝑘𝑚

0                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

Where, k defines the range of the filter in 

the interval [-km,km] and wave numbers of the 

signal. The window function is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

The other filter that is usually used for this 

purpose is the Hamming filter and its definition is 

given below. It has a shape that is closely similar to 

that of the Hanning filter. 

 

𝐻 𝑘 

=  
0.54 + 0.46 cos  

𝜋𝑘

𝑘𝑚
        − 𝑘𝑚 ≤ 𝑘 ≤ 𝑘𝑚

0                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

Where, the interval [-km,km] and k 

define the range of the filter and wave numbers 

of the signal respectively. 

 

3.3 Truncation Error:  

 

Almost all real world signals are of long 

duration or of long length. It can even be of 

infinite duration or of length. Normally we are 

only interested in a limited portion of a signal 

and we have to extract that portion of the signal 

by truncating it. The mathematical equivalent of 

truncation of a signal is multiplication of the 

signal by a rectangular window of unit height or 

by a box-car function. According to the 

convolution theorem the Fourier transform of 

the truncated function is equivalent to 

convolution of the Fourier transform of the 

original signal and that of the box-car function. 

It is well known that the Fourier transform of a 

box-car function is a sine cardinal function or a 

“sinc” function, (
sin 𝑓

𝑓
).  The most prominent 

characteristic of the “sinc” function is its side 

lobes on either side of its principal maximum. 

These side lobes introduce spurious ripples at 

the high frequency end of the frequency domain 

function introducing undesirable deformation to 

the spatial domain function (Bracewll, 1965; 

Blackman and Tukey, 1959;  Brigham, 1974 ). 

This effect is very often referred to as the 

truncation effect and has been illustrated in 

Figure 3 : 

Hanning  

window. 
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Figure 4. Employing suitable filters or simply 

by selecting a large portion of the signal, the 

truncation error can be minimized. When the 

length of the box function is increased its 

Fourier transform becomes closer to a delta 

function devoid of side lobes reducing “ripple 

effect” mentioned above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Instability due to truncation 

error. (a) :Spatial domain function and its 

frequency domain function, (b) : Box car 

function and its Fourier transform (sinc 

function) with side lobs.(c):Truncated function 

( ℎ 𝑥  ×   𝑋 𝑥  ) and its Fourier 

transform( 𝐻 𝑓 ∗ 𝑋 𝑓  ). 

 

3.4 Gibb’s Phenomenon:  

 

Sampling a signal with a certain frequency is 

equivalent to removing of the effects due to 

frequencies higher than that frequency. Since 

the frequency domain (sampled) function or the 

Fourier transform does not contain all the 

information in the original function, it is not 

possible to recover the original spatial domain 

function from its Fourier transform. This is 

known as the Gibb’s phenomenon. Bracewell 

(1965) has beautifully illustrated the Gibb’s 

phenomenon considering a step function. The 

effect of the Gibb’s phenomenon can never be 

removed from a signal as it is an inherent effect 

caused by sampling a signal. However, it can be 

reduced simply by increasing sampling 

frequency. The Gibb’s phenomenon has been 

illustrated below using a square wave. 

Illustration of Gibb’s phenomenon is shown in 

the Figure 5. Here, the square wave function is 

defined as, 

 

𝑓 𝑥 =  
1                0 ≤ 𝑥 ≤ 𝜋

−1              − 𝜋 ≤ 𝑥 < 0
           

 

f(x) is periodic beyond the above interval with a 

period 2𝜋. 

 

Fourier series of the function can be written as, 

 

𝑓 𝑥 =
4

𝜋
 
sin x

1
+

sin 3𝑥

3
+

sin 5𝑥

5
+ ⋯ +

𝑠𝑖𝑛 2𝑛 − 1 𝑥

 2𝑛 − 1 
+ ⋯  

 

Partial sums of the above series for 

𝑛 = 1, 𝑛 = 11, 𝑛 = 26 and 𝑛 = 41 and are 

plotted with x below (Figure 5). As can be seen 

from this illustration when the number of terms 

considered is increased the shape of the figure 

comes closer to a square wave.  At the same 

time we can observe that the frequency of 

“wiggles” in flat region of the figure increases 

instead of completely disappearing. It is 

obvious these will disappear only when infinite 

numbers of terms are added. Therefore it is 

impossible to regain the original function from 

a Fourier transform of a sampled function.  
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Figure 5: Illustration of Gibb’s phenomenon 

using a square wave.  The figure A gives the 

first term of the series and figures B, C and D 

give the partial sums of the 11, 26 and 41 terms 

respectively.  It can be observed that when the 

number of terms in the partial sum increases, 

the shape of the waveform becomes closer to a 

square wave, but the frequency of the wiggles 

in the waveform increases. Note only the region 

of the wave from –  is depicted in the figure. 

 

4.  Symmetries of Fourier transforms of real 

functions 

 

Fourier transform of a real function is a 

complex function with some special properties. 

It can be shown easily that the real part of a 

Fourier transform of real function is symmetric 

while its imaginary part is anti-symmetric 

(Bracewell, 1965). These symmetries for one 

dimensional and two dimensional functions are 

illustrated in the Figure 6 and in Figure 7. 

 

Let us consider a spatial domain real 

function. As explained above the Fourier 

transform of this function has a symmetric real 

part and anti symmetric imaginary part. If we 

do some mathematical manipulations on the 

Fourier transform and if we expect the inverse 

Fourier transform of this function to be real in 

the spatial domain for some physical reason 

then we have to adjust the Fourier transform so 

that it has the above mentioned symmetries. 

Otherwise we will end up with an imaginary 

function which does not have any physical 

meaning. 
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Figure 6: Symmetry relationships of real and 

imaginary parts of the Fourier transform of a 

real function h(x). Spatial domain function is 

depicted Figure 6(a).Symmetric nature of the 

real part of the Fourier transform and the anti-

symmetric nature of the imaginary part of the 

Fourier transform have been illustrated in 

Figure 6(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

(e) 

 

Figure 7: Illustration of symmetry relationships 

of Fourier transform of a 6 × 6  two 

dimensional real function (7.a and 7.b give real 

part and a cross-section while 7.c and 7.d give 

imaginary part and a cross-section). Note that 

first row of 7(a) (excluding a11)  is symmetric 

around a14 and similarly its first column is 

symmetric around a41. Also note that first row 

of 7(c) is (excluding b11) anti-symmetric around 

b14 and similarly its first column is anti-

symmetric around b41. Relationships of 

remaining terms are self-evident and are also 

depicted in figure 7(e).  

 

5.  Limitations of Fourier Transforms and 

Novel Trends in the Signal Processing 

 

The Fourier transform of a continuous signal is 

an expression that indicates how the amplitudes 

of various frequencies present in a signal varies 

with the frequency. In the case of continuous 

Fourier transforms we use the knowledge of the 

signal from −∞ to  and a s a result of this we 

are in a position to determine amplitudes of 

infinite number of frequencies or in more 

practical terms amplitudes of all frequencies 

present in the signal.  When dealing with real 

world signals we always have to truncate it and 

sample it and this will limit the number of 

frequencies that we can extract from it. We can 

only determine the amplitudes of frequencies 

equal to the half the number of samples 

subjected to the limitations imposed by the 

sampling theorem. Further, we only obtain 

amplitudes of frequencies given by n/(NΔ), 

where n=-N/2,….,N/2  and Δ is the sampling 

interval. Another limitation of Fourier 

transforms is that it does not contain any local 

information. In order to address this problem 

windowed Fourier transforms or short interval 

Fourier transforms have been introduced. In 
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windowed Fourier transforms, signal is divided 

into several intervals according to the local 

features present in the signal and the Fourier 

transform of each interval is taken separately. 

More elegant method of addressing this and 

several other problems in Fourier transform 

method has been first introduced by Morlet 

(1982) and later developed by many others 

(Grossman and Morlet, 1984;  Daubechies, 

1990). The wavelet transform has become a 

widely used technique in signal processing 

today. In spite all these new developments the 

Fourier transform is still used by many 

researchers through out of the world in a 

multitude of disciplines. 
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