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Abstract 

 

In life insurance analysis, weighing insured’s benefits and contributions which occur over 

time requires discounting those amounts to present value equivalents. Therefore, the 

choice of discount rate can be consequential for the valuation of insurance policies. Out 

of the functions making up the life insurance products, there seems to be no closed form 

numerical estimates for the interest rate intensity and present value functions. This 

identified problem may either be in favour of the insured or ortherwise. However, the 

practice favours the life insurer most in actuarial valuation under the deterministic 

parsimonious setting. Empirical evidence suggests that new theoretical model advances 

given the future uncertainty likely suggesting lower long-term rates. This evidence 

generally supports lowering discount rates under a feasible best guess based on the 

available financial information. This necessitates deriving a discount rate which can 

adjust for the fact that benefits are more valuable at present than in the future if 

policyholders prefer to buy cover now rather than wait or if insurers could be earning a 

positive return on invested incomes. In this study, the objectives is to develop model for 

the present value function under the Chebyshev polynomial series framework within the 

interval of orthogonality and then define some life table structures on the model. From 

our analytical constructions, as the argument of the polynomial series tends to, we obtain 

the present value function, which attempts to balance the interests of the policyholders 

and the life insurers. 
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1. Introduction 

 

In life insurance, long term policies are standard for instance pension schemes which 

may consist of periodic payment of contributions until the insured retires followed by 

periodic benefits until a defined future time. The insured could have paid the initial 

contribution several years in advance, and this time difference may have a pervasive 

effect on the valuation of such policy. The value of 1 A life fund's unit measured at some 

other time is usually governed by the forces of supply and demand, although insurance 

liability is not easily traded in the most liquid market. 

Therefore, time value of money explains why it is sufficient to receive benefit now rather 

than in the future because of its earning potential and hence accounts for the reason 

why interest is paid. Consequently, discounting is used to compare benefits and 

contribution of a scheme or regulation that occurs over time lags. In Bulpitt, T. (n.d.), 

Canadian Institute of Actuaries (2019a), Canadian Institute of Actuaries (2019b), 

Insititute and Faculty of Actuaries (2020), discounting the estimates of future cash flows 

is among the IFRS 17 requirements to reflect the time value of money and investment 
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risk connected with the cash flows assuming these financial risks are not included in the 

initial estimation of the cash flows. As observed in the paragraph 36  Under IFRS 17, the 

applicable discount rates for estimating the expected cash flows should reflect the time 

value of money, the characteristics of cash flows, and the characteristics of insurance 

contracts' liquidity. It is further required that the effects of the factors affecting the 

observable market prices used in obtaining the discount rate but not affecting the 

expected cash flows of insurance contracts should be excluded.  

Although, recent studies in actuarial research particularly in life insurance mathematics 

resulted in proposal of new models for describing and modelling the valuation of mortality, the 

applicable present value and interest rate modelling for actuarial life valuation are core 

challenging areas which are yet to be deeply explored under very sophisticated analytical 

constructions. Therefore, understanding the bevaviour of interest rates under robust analytical 

models may interest the academic actuary in pricing and reserving insurance products such as 

life annuities.  

Following Cropper and Laibson (1999), Mahbub (2006), Kellison (2009), and Jessop 

(2018), there are two main rationales for discounting benefits and contributions that 

occur in the future relative to the present. The future is not certain, and insurers may 

want to obtain the present benefit value on an insured now rather than later. Secondly, 

insurance policy holders’ contributions meant to be invested in line with government 

regulations displace capital that would otherwise be earning a positive return elsewhere 

in the economy.  

Cropper, Freeman, Groom, and Pizer (2014) employ the discount rate in a broad range of 

financial decisions, including project analysis. Under theoretical modelling, the 

appropriate discount rate to apply in evaluating a regulation's net costs or benefits 

depends on whether the regulation basically and directly affects private consumption or 

private capital. Regulation may directly affect private consumption by raising consumer 

prices for goods and services. In contrast, regulation may also displace or alter the use 

of capital in the private sector. 

This study aims to shed light on the theoretical methodologies relevant to any assessment 

of the discount rates in insurance regulatory framework and particular valuation of policy 

values. The single market interest rate could be an unambiguously correct choice to 

perform actuarial valuation of benefits in present day terms. However, in life insurance 

valuation, interest rate are fixed below the market rates because market interest rates 

often reflect risks associated with capital investments. Consequently, this evidence 

supports lowering these discount rates with a possible best guess based on the available 

market information. 

Weitzman (1998) and Weitzman (2001) theoretically proved, while Newell and Pizer 

(2003) and Groom, Koundouri, Panopoulou, and Pantelidis (2007) confirm empirically 

that discount rate uncertainty could have a marked effect on the net present values. 

Following Newell and Pizer (2003) and Summers and Zeckhauser (2008), a significant 

implication from these studies is that a sustained element of uncertainty in the discount 

rate will result in an effective discount rate that declines over time.  

According to Weitzman (1998), Weitzman (2001), Groom et al. (2007) and Gollier (2008), 

lower discount rates seem to persist over very long period irrespective of whether the 
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estimated investment effects are predominantly measured in private capital. 

The essential way to model discount rate uncertainty remains an active area of actuarial 

research. Gollier (2002) extends the Ramsey framework by considering an extra term that 

reduces the expected growth rate to account for an uncertain future. Furthermore, Gollier 

and Hammitt (2014) argue that the impact is to reduce the discount rate, though the 

effect could be insignificantly small.  

Newell and Pizer (2003) employ a model of how long- term interest rates change over 

time to forecast future discount rates. Their model incorporates some of the basic 

features of how interest rates change over time and its parameters are estimated based 

on historical observations of long-term rates. Subsequent work most notably Groom et al. 

(2007) considers more general models of interest rate dynamics to allow for better 

forecasts. Specifically, the volatility of interest rates depends on whether rates are 

currently low or high and variation in the level of persistence over time. In Azevedo (2021) 

and EIOPA (2021), the discount rate is defined as 

          Discount rate risk freerate illiquidity premium= +    (1) 

Following the author’s observation, the first step in this approach is to obtain the risk-free 

rate or yield curve. However, IFRS 17 does not prescribe any technique required to 

construct a model for the risk-free rate. 

Suppose eD  defines the effective rate of discount corresponding to the nominal rate of 

discount D  convertible m  times a year. Let A  be the maturity amount at the end of 1 

year.  At eD  effective rate of discount, the present value is given by  

( )1 1 ePV A D= −        (1a) 

At D  nominal rate of discount convertible m  times a year, the present value is given by 

2 1

m
D

PV A
m

 
= − 

 
       (1b) 

However, it must be that  

2 1PV PV=         (2) 

Consequently, we have 

( )1 1

m

e

D
A A D

m

 
− = − 

 
      (3) 



 
 

International Journal of Social Statistics - USJ  
Volume 02 | Issue 01 | March, 2025 

33 | P a g e  

 

( )1 1

m

e

D
D

m

 
− = − 

 
       (4) 

1 1

m

e

D
D

m

 
= − − 

 
       (5) 

Taking the limit of the right hand side, we obtain 

lim 1 1

m

e
m

D
D

m→

  
= − −     

      (6) 

1 lim 1

m

e
m

D
D

m→

 
= − − 

 
       (7) 

1 lim 1

D
m

D

e
m

D
D

m

−

−

→

 
= − − 

 
      (8) 

1 lim 1

D
m

D

e
m

D
D

m

−

−

→

 
  = − −   
 

      (9) 

1

1 lim 1

D

D

m
e

m

D
D

m

−
−

→

 
  = − −   
 

      (10) 

Consequently, the effective rate of discount equivalent to the nominal rate of discount 

convertible continuously is given by 

1 D

eD e−= −         (10a) 

The goal of this paper is to leverage on Chebyshev polynomial to build continuous 

discount and future value functions within the interval of orthogonality  1,1− . The 

actuarial application of Chebyshev polynomial to the risk free interest rate representation 

is of great importance to obtain the value of the discount function within a year of 

insurance transaction. Following Rababah (2003) and Lv and Shen (2017), Chebyshev 

polynomials have been confirmed to be beneficial as polynomial approximation of a 

continuous actuarial function with arbitrary precision. It has equal error property as it 

oscillates between  1−  and 1. In order avoid confusion with the complete future life time 
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( )T x , we use C  for the Chebyshev polynomial.  

The value of 1 unit of a fund at time 0s   measured at some time 0   is defined by 

( ),V s . If s  , then ( ),V s  is the ( )s −  discount factor. However, when s  , 

then ( ),V s  is the ( )s −  interest factor. Both ( ), 0V s  and ( ), 0V s  . It is 

believed that interest accumulates frequently say monthly at a rate m  and hence we 

have 

( ) ( ),0 1
m

V m i= +             (11) 

( ) ( )0, 1
m

V m i
−

= +        (11a) 

For , , 0u s   and from the principle of consistency, we have 

( ) ( ) ( ), , ,V s V u V u s =       (11b) 

if u =  in  (11b) 

( ) ( ) ( ), , ,V s V V s   =       (11c) 

( ), 1V            (11d) 

if s =  in (11b) 

( ) ( ) ( ), , ,V V u V u   =       (11e) 

( )
( )

( ) ( )

, 1
,

, ,

V
V u

V u V u

 


 
= =       (11f) 

When 0 = , we have 

( ) ( ) ( )0, , 0,V u V u s V s=       (11g) 

2. Materials and Methods 

 

Define  

 : 1,1mC − → R        (12) 
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At the extreme right of the interval, we generate the future value function; at the extreme 

left, we produce the discount function. The function ( )C s can be approximated using 

Taylor’s series expansion about an arbitrary time s  hence  

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
2 32 3

2 3
0 0 0 0 ... 0

1! 2! 3! !

k k

m m m m m mk

s s s sd d d d
C s C C C C C

ds ds ds k ds
= + + + + +  (13) 

Given the Chebyshev function defined as ( ) ( )cosmC s m=  where coss =  

If  s  is defined within the interval  1,1−  then the interval of   can be taken as  0, . 

We observe that these ranges are traversed in the opposite sense because 1s = −  

corresponds to  =  and 1s =  corresponds to 0 = .  Again, cos0 1 = ; 

cos1 cos = ; 
2cos2 2cos 1 = −  

3cos3 4cos 3cos  = − ;  
4 2cos4 8cos 8cos 1  = − + ; 

( )0 1C s =          

 (14) 

( ) ( )1 cos cosC s s  = = = −        

 (15) 

 

( ) 2

2 2 1C s s= −         

 (16) 

 

( )2

22 1s C s= +         

 (16a) 

 

( ) ( ) ( )2 2 02
1

2 2

C s C s C s
s

+ +
= =       

 (16b) 

 

( ) 3

3 4 3C s s s= −         

 (17) 

 

( )3

34 3s C s s= +         

 (17a) 
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( ) ( )3

3 14 3s C s C s= +         

 (17b) 

 

( ) ( )3 13
3

4

C s C s
s

+
=         

 (17c) 

 

( ) 4 2

4 8 8 1C s s s= − +         

 (18) 

 

( )4 2

48 8 1s C s s= + −         

 (18a) 

 

( )
( ) ( )

( )2 04

4 0

8 8
8

2

C s C s
s C s C s

 +
= + − 

 
     

 (18b) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )4

4 2 0 0 4 2 08 4 4 4 3s C s C s C s C s C s C s C s= + + − = + +   

         (18c) 

( ) ( ) ( )4 2 04
4 3

8

C s C s C s
s

+ +
=       

 (19) 

 

( ) 5 3

5 16 20 5C s s s s= − +         

 (20) 

 

( )5 3

516 20 5s C s s s= + −         

 (20a) 

 

( )
( ) ( )

( )3 15

5 1

3
16 20 5

4

C s C s
s C s C s

 +
= + − 

 
     

         (20b) 

 

( ) ( ) ( ) ( )5

5 3 1 116 5 3 5s C s C s C s C s = + + −        

         (20c) 

      

( ) ( ) ( ) ( )5

5 3 1 116 5 15 5s C s C s C s C s= + + −       

         (20d) 
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( ) ( ) ( )5

5 3 116 5 10s C s C s C s= + +        

 (20e) 

 

( ) ( ) ( )5 3 15
5 10

16

C s C s C s
s

+ +
=       

 (21) 

 

( ) 6 4 2

6 32 48 18 1C s s s s= − + −       

 (22) 

 

( ) ( ) ( ) ( ) ( ) ( )

( )

6

6 4 2 0 2 0

0

32 6 24 18 9 9C s s C s C s C s C s C s

C s

= − − − + +

−
  

        (22a) 

 

( ) ( ) ( ) ( )6

6 4 2 032 6 15 10C s s C s C s C s= − − −      

        (22b) 

 

( ) ( ) ( ) ( )6

6 4 2 032 6 15 10s C s C s C s C s= + + +      

 (22c) 

( ) ( ) ( ) ( )6 4 2 06
6 15 10

32

C s C s C s C s
s

+ + +
=      

        (22d) 

 

( ) 7 5 3

7 64 112 56 7C s s s s s= − + −        

        (23) 

   

( ) ( ) ( ) ( ) ( ) ( ) ( )7

7 5 3 1 3 1 164 7 35 70 14 42 7C s s C s C s C s C s C s C s= − − − + + −    

        (23b) 

 

( ) ( ) ( ) ( )7

7 5 3 164 7 21 35C s s C s C s C s= − − −       

        (23c) 

 

( ) ( ) ( ) ( )7

7 5 3 164 7 21 35s C s C s C s C s= + + +       

        (23d) 

 

( ) ( ) ( ) ( )7 5 3 17
7 21 35

64

C s C s C s C s
s

+ + +
=       

        (23e) 
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( ) 8 6 4 2

8 128 256 160 32 1C s s s s s= − + − +       

        (24) 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

8

8 6 4 2 0 4

2 0 2 0 0

128 8 48 120 80 20

80 60 16 16

C s s C s C s C s C s C s

C s C s C s C s C s

= − − − − +

+ + − − +
  

        (24a) 

 

( ) ( ) ( ) ( ) ( )8

8 6 4 2 0128 8 28 56 35C s s C s C s C s C s= − − − −     

        (24b) 

 

( ) ( ) ( ) ( ) ( )8

8 6 4 2 0128 8 28 56 35s C s C s C s C s C s= + + + +     

        (24c) 

 

( ) ( ) ( ) ( ) ( )8 6 4 2 08
8 28 56 35

128

C s C s C s C s C s
s

+ + + +
=     

        (24d) 

 

Following the same procedures, we obtain 

( ) 9 7 5 3

9 256 576 432 120 9C s s s s s s= − + − +       

        (24e) 

 

( ) 10 8 6 4 2

10 512 1280 1120 400 50 1C s s s s s s= − + − + −     

        (24f) 

In general, the Chebyshev polynomial can be defined in terms of the generating function   

( ) ( )2
0

1
,

1 2

m

m

m

xs
f s x C x s

xs s



=

−
= =

− +
       

        (24g) 

( ) 2 1

1 1
, ; ;

2 2
m

x
C x F m m

− 
= − 

 
      

        (24h) 

( ) ( ) ( )( )( )
2

2

0

1
1 2 ; 1

2

m

r m rm r

m r

r

m
C x C x m

m r

 
 
 

−−

=

    
= −      

−    
   

        (24i) 

Following Abchiche M., and Belbachir H. (2018), Kim, Kim, Jang, Dolgy (2018) and Ricci 

(2020), the Chebyshev polynomial can be described based on based on Rodrigues 

equation as follows. 
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( )
( )

( )
( ) ( )

0.5
2 2

1 2 !
1 1

2 !

m m m
m

m m

m d
C x x x

m dx

−−
= − −     

        (24j) 

The Chebyshev polynomial satisfies the orthogonal properties concerning the weighting 

function 

( )
2

1

1
w x

x
=

−
        

        (24k) 

Employing the inner products of two real valued functions f  and g  

( ) ( ) ( )
1

1

,f g w x f x g x dx
−

=         

        (24l) 

The orthogonality condition requires that 

 , 0f g =          

        (24m) 
1

2
1

1
,

1
i j i jC C C C dx

x−

=
−

        

        (24n) 

0

, cos sini jC C i j d



  =         

        (24o) 

Letting cosx = , 
2sin 1dx d x d  = − = − − , ( ) cosiC x i=  

( ) ( )( )
0

1
, cos cos ;

2
i jC C i j i j d i j



  = + + −    

 (24p) 

( )

( )

( )

( )
0

sin sin1
, 0

2
i j

i j i j
C C

i j i j





 

=

 + −
= + = 

+ +  
   

 (24q) 

, 0;i jC C i j=          

        (24r) 

Hence, ( ); 0,1, 2,3,...iC s i =  forms an orthogonal polynomial system on  1,1−  with 

respect to the weighting function ( )
2

1

1
w x

x
=

−
 

Observe that  
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( ) ( ) ( ) ( )
2 3 4 5

1 ...
2! 3! 4! 5!

i
i i i i

e i
   

= + + + + +     

        (25) 

Therefore, 
2 3 4 5

1 ...
2! 3! 4! 5!

ie i i i    
− = + − − + + −      

        (26) 

 

2 4 6 3 5 7

1 ...
2! 4! 6! 3! 5! 7!

ie i      


   
= − + − + − + − −   
   

   

        (27) 

 

cos sinie i  = +         

        (28) 

 

cos sinie i  − = −         

        (29) 

 

Therefore, 

 

( ) ( ) ( )2 2

1 1...
m i m i mi i im m m im

me e e C e C e e
    − − −− −

−+ = + + + +    

        (30) 

 

( ) ( ) ( ) ( )( ) ( ) ( )( )2 2 4 4

1 1 2 ...
m i m i m i m i mi i im im m m m

me e e e C e C e C e e
       − − − − − −− −

−+ = + + + + + +  

(31) 

The number of brackets will be 1
2

m 
+ 

 
 where .    is an integer function. If m  is even, 

the last bracket contains only the one middle term 
0 1e  =  

But 

( ) ( )2cos
m mi ie e  −+ =        

        (32) 

 

( ) 2 cos
m

i i m me e  −+ =        

        (33) 

( )
2

1

0

2 cos cos 2

m

m m m

k

k

C m k 

 
 
 

−

=

= −       

        (34) 

where .  denotes that the kth  term in the sum must be divided by 2 if m  is even and 
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2

m
k =  

Therefore, from the definition of ( )mC s  

( )
2

1

2

0

2 cos

m

m m m m

k m k

k

s C C s

 
 
 

−

−

=

=       (35) 

Using equation (15) an ( ) ( )cosmC s m=  in the trigonometric identity  

( )  ( )   cos 1 cos 1 2cos cosm m m   + + − =     (36) 

Then we obtain  

( ) ( ) ( )1 1 2m m mC s C s sC s+ −+ =      (37) 

 

( ) ( ) ( ) ( )1 12 2m m m mC s C s sC s C s+ −
  = − +     (37a) 

 

( )
( ) ( ) ( )1 12

2

m m m

m

C s sC s C s
C s

+ −
   − + =     (37b) 

where m  is the degree of the polynomial and  1m   

( ) ( )
2

2 1 2

0

1 2

m

k m k m k

m

k

m km
C s s

km k

 
 
 

− − −

=

− 
= −  

−  
    (38) 

and  

( )
2

1

2

0

2

m

m m

m k

k

m
s C s

k

 
 
 

−

−

=

 
=  

 
       (39) 

where the summation means that we must divide the kth term in the sum by 2  if m is 

even, 
2

m
k =  for instance if 6m = . From the above

2

m 
 
 

 will be the floor (integer) 

function 
2

m 
 
 

 when m is a positive integer and 
2

m 
 
 

 will be the ceiling function 
2

m 
 
 

if m is odd, for instance 6.5 6=    and 6.5 7=    
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( ) ( )

( ) ( ) ( ) ( )

6

2 3
6 1 6 5

6 2 6 2

0 0

5

6 6 2 6 4 6 6

6 6
2 2

6 6 6 61
2

0 1 2 32

k k

k k

s C s C s
k k

C s C s C s C s

 
 
 

− −

− −

= =

−

− − −

   
= = =   

   

        
+ + +        

        

 
  

 (40) 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

6 5

6 4 2 0

6 4 2 0

1
2 6 15 20

2

6 15 10

32

s C s C s C s C s

C s C s C s C s

−  
= + + + = 

 

 + + + 

   

        (41) 

Furthermore, from the arguments in equation (11b), the one-dimensional discount 

function is defined as  

( ) ( )0,V u V s=         

        (41a) 

( ) ( ),
s

V s e
 


 −

=         

        (41b) 

( ) ( ) ( ) ( ) ( ) ( ), , ,
u u s s

V u V u s e e e V s
    

 
 −  −  −

= = =     

        (41c) 

 

( ) ( ),
sd

V s e
d

 
 



 −
=         

        (41d) 

 

( ),
s

d
V s

d 

 
 =

 
= 

 
        

        (41e) 

 
2 2 3 3 4 4 5 5 6 6 7 7 8 8

1
2! 3! 4! 5! 6! 7! 8!

s s s s s s s s
e s       

= + + + + + + + +   

        (42) 

Substituting for the powers of s  in the above equation (42), we have 
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( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 3

2 0 3 1

0 1

4 5

4 2 0 5 3 1

6 7

6 4 2 0 7 5 3 1

8

8 6 4 2 0

3

4 24

4 3 5 10

192 1920

6 15 10 7 21 35

23040 322560

8 28 56 35

5160960

s
C s C s C s C s

e C s C s

C s C s C s C s C s C s

C s C s C s C s C s C s C s C s

C s C s C s C s C s


 



 

 



   + +   = + + + +

   + + + +   + +

   + + + + + +   + +

 + + + + 

   

(43) 

 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 3 3

2 0 3 1

0 1

4 4 4 5 5 5

4 2 0 5 3 1

6 6 6 6 7 7 7

6 4 2 0 7 5 3

7

1

3

4 4 24 24

4 3 5 10

192 192 192 1920 1920 1920

6 15 10 7 21

23040 23040 23040 23040 322560 322560 322560

35

s
C s C s C s C s

e C s C s

C s C s C s C s C s C s

C s C s C s C s C s C s C s

C


   



     

      



= + + + + + +

+ + + + + +

+ + + + + +

+
( ) ( ) ( ) ( ) ( ) ( )8 8 8 8 8

8 6 4 2 08 28 56 35

322560 5160960 5160960 5160960 5160960 5160960

s C s C s C s C s C s    
+ + + + +

(44) 

Collecting the like terms, we have 

( )
( ) ( ) ( ) ( )

( )
( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 4 8 6 5

0 0 0 0 1

0 1

3 7 2 4 6 8

1 1 2 2 2 2

3 5 7 4 6 8

3 3 3 4 4 4

3 35 10 10

4 192 5160960 23040 1920

3 35 4 15 56

24 322560 4 192 23040 5160960

5 21 6 28

24 1920 322560 192 23040 5

s
C s C s C s C s C s

e C s C s

C s C s C s C s C s C s

C s C s C s C s C s C s

     


     

     

= + + + + + + +

+ + + + +

+ + + + + +

( ) ( ) ( ) ( ) ( ) ( )5 7 6 8 7 8

5 5 6 6 7 8

160960

7 8

1920 322560 23040 5160960 322560 5160960

C s C s C s C s C s C s     
+ + + + + +

(45) 

Factoring out the ( )iC s  in (45) 
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( ) ( )

( )

( ) ( )

2 4 8 6 5 3 7

0 1

2 4 6 8

2

3 5 7 4 6 8

3 4

5

3 35 10 10 3 35
1

4 192 5160960 23040 1920 24 322560

4 15 56

4 192 23040 5160960

5 21 6 28

24 1920 322560 192 23040 5160960

19

se C s C s

C s

C s C s

       


   

     



   
= + + + + + + + + +   
   

 
+ + + 

 

   
+ + + + + +   
   

+ ( ) ( ) ( ) ( )
7 6 8 7 8

5 6 7 8

7 8

20 322560 23040 5160960 322560 5160960
C s C s C s C s

       
+ + + + +   

   

(46) 

 

Substituting the values of ( )iC s  in (46), we have 

( ) ( )

2 4 8 6 5 3 7

2 4 6 8 3 5 7
2 3

4 6 8
4 2

3 35 10 10 3 35
1

4 192 5160960 23040 1920 24 322560

4 15 56 5 21
2 1 4 3

4 192 23040 5160960 24 1920 322560

6 28
8 8

192 23040 5160960

se s

s s s

s s

       


      

  

   
= + + + + + + + + +   
   

   
+ + + − + + + −   

   

 
+ + + − + 
 

( ) ( )

( )
( )

( )

5 7
5 3

7 7 5 36 8
6 4 2

8 8 6 4 2

7
1 16 20 5

1920 322560

64 112 56 78
32 48 18 1

23040 5160960 322560

128 256 160 32 1

5160960

s s s

s s s s
s s s

s s s s

 

 



 
+ + − + 
 

− + − 
+ + − + − + 
 

− + − +
+

 (47) 

 

3. Result and Discussion 

 

In (47), let 1s =  so that we can obtain the future value function 
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2 4 8 6 5 3 7

2 4 6 8 3 5 7

4 6 8 5 7

3 35 10 10 3 35
1

4 192 5160960 23040 1920 24 322560

4 15 56 5 21

4 192 23040 5160960 24 1920 322560

6 28 7

192 23040 5160960 1920 322560

e
      



      

    

   
= + + + + + + + + +   
   

   
+ + + + + +   

   

   
+ + + + +  
  

6 8 7

8

8

23040 5160960 322560

5160960

  






 
+ + + 
 

+

 

 (48) 

The effective rate of interest i  can be obtained from the exact equation 

( )log 1e i = +         

 (48a) 

Using (48a), we have 

 

2 4 8 6 5 3 7

2 4 6 8 3 5 7

4 6 8 5 7

3 35 10 10 3 35
1

4 192 5160960 23040 1920 24 322560

4 15 56 5 21

4 192 23040 5160960 24 1920 322560

6 28 7

192 23040 5160960 1920 322560

e
      



      

    

   
− = + + + + + + + +   

   

   
+ + + + + +   

   

   
+ + + + +  
  

6 8 7

8

8

23040 5160960 322560

5160960

  






 
+ + + 
 

+

(49) 
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2 4 8 6 5 3 7

2 4 6 8 3 5 7

4 6 8 5 7

1 3 35 10 10 3 35

4 192 5160960 23040 1920 24 322560

4 15 56 5 21

4 192 23040 5160960 24 1920 322560

6 28 7

192 23040 5160960 1920 322560

e
 

      


      

    

=
−    

+ + + + + + + +   
   

   
+ + + + + +   

   

  
+ + + + + 
  

6 8 7

8

8

23040 5160960 322560

5160960

  



 
 
 
 
 
 
 

 
  

 
  
 + + + 
  
 
 +
 
 

(50) 

Equation (50) therefore defines a relationship between Chebyshev polynomial and 

Bernoulli Power series.  

( )
01 !

m

m

m

f B
e m

 




=

= =
−

       

 (51) 

Then we need to obtain the Bernoulli numbers mB  using the following techniques. 

( )
0 0

lim lim
1

f
e 




→ →
=

−
       

 (52) 

 

( )
0 0

1
lim limf

e 


→ →
=        

 (53) 

 

( )
0 0

1
lim lim 1f

e 


→ →
= =        

 (54) 

 

( )
( )

2

1

1

e e
f

e

 






− −
 =

−
       

 (55) 

 

( )
( )

20 0

1
lim lim

1

e e
f

e

 

  




→ →

− −
 =

−
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 (56) 

( )
( )0 0

lim lim
2 1

e e e
f

e e

  

  




→ →

− −
 =

−
      

 (57) 

 

( )
( )0 0

lim lim
2 1

f
e 




→ →

−
 =

−
      

 (58) 

 

( )
( )0 0

1
lim lim

2
f

e 


→ →

−
 =       

 (59) 

( )
0

1
lim

2
f




→

−
 =        

 (60) 

 

( ) ( ) ( )( ) ( )( ) ( )
2 32

1 1 2 1f e e e e e e e e         
− −

= − − − + − − − −  

 (61) 

 

( ) ( )
( )

( )

( )( )

( )
2

2 30 0 0

1 2
lim lim lim

1 1

e e e e
f

e e

   

   

 


→ → →

− − − −
= +

− −
  

 (62) 

 

( ) ( )
( )

( )
( ) ( )

( )
2

20 0 0

1
lim lim 2 lim

2 1 3 1

e e e e e e ee e
f

e e e e

       

     

 


→ → →

− − + − −− −
= + −

− −

(63) 

 

( ) ( )
( )

( )
( ) ( )

( )
2

20 0 0

11
lim lim 2 lim

2 1 3 1

e e e
f

e e

  

   

 


→ → →

− − + −− −
= + −

− −
 

 (64) 

 

( ) ( )
( )

( )
( )

( )
2

0 0 0

1
lim lim 2 lim

2 6 1

e e e e e
f

e e e

    

    

 


→ → →

− − − −−
= + −

−
 

 (65) 
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( ) ( ) ( )
( )

( )
2

0 0

11
lim 2 lim

2 6 1
f

e 

 


→ →

− − −−
= + −

−
    

 (66) 

 

( ) ( ) ( )
( )

( )
2

0 0

2 11
lim 2 lim

2 6 1
f

e 




→ →

− −−
= + −

−
    

 (67) 

 

( ) ( ) ( )
( )

( )
2

0 0

21
lim 2 lim

2 6
f

e 


→ →

−−
= + −      

 (68) 

 

( ) ( )2

0

1 4 1
lim

2 6 6
f




→

−
= + =       

 (69) 

 

( ) ( )
0 0

1
1

1

m k
r k m

m r

k r

B C r
k= =

= −  
+

       

 (70) 

 

mB  is the mth  derivative of 
1e



−
evaluated at 0 =  

 

0
1

m

m m

d
B

d e





=

 
=  

− 
      

 (71) 

 

Let 

( )( )1 1U Ue e= − −        

 (72) 

Observe that  

( )
( )1

1

1
log 1

k

k

e

k k





−

=

−
= −       

 (73) 

 

( )
1

log 1
k

e

k k






=

− = −        

 (74) 
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( )
1

1
k

k

e

k






=

−
=        

 (75) 

( )
1

1

1

1

k

k

e

e k






−



=

−
=

−
        

 (76) 

 

Replacing k  by 1k + , we have 

( )
0

1

1 1

k

k

e

e k





 

=

−
=

− +
        

 (77) 

Substitute (77) in (71), we have 

( )
0

0

1

1

k
m

m m
k

ed
B

d k









=

=

−
=

+
       

 (78) 

 

( )
0 0

1
1

1

m
k

m m
k

d
B e

k d








= =

 
= − 

+ 
      

 (79) 

Therefore, 

( ) ( )( )
0

0

lim
1 !

m
m

m

f
e m 

 




→
=

=
−

       

 (80) 

 
2 4 61 1 1 1

1 ...
1 2 6 2! 30 4! 42 6!e

   
= − + − + +

−
    

 (81) 

 
2 4 61

1 ...
1 2 12 720 30240e

   
= − + − + +

−
    

 (82) 

 

Therefore, the actuarial discount function is obtained by replacing s  by s−  In (47), we 

obtain the discount function 
2 2 3 3 4 4 5 5 6 6 7 7 8 8

1
2! 3! 4! 5! 6! 7! 8!

s s s s s s s s
e s       

− = − + − + − + − +  

 (83) 

The discount function is obtained by replacing s  by s−  in equation (47) becomes 
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( ) ( )

2 4 8 6 5 3 7

2 4 6 8 3 5 7
2 3

4 6 8
4

3 35 10 10 3 35
1

4 192 5160960 23040 1920 24 322560

4 15 56 5 21
2 1 4 3

4 192 23040 5160960 24 1920 322560

6 28
8 8

192 23040 5160960

se s

s s s

s s

       


      

  

−    
= + + + + − + + + +   
   

   
+ + + − + + + − +   

   

 
+ + + − 
 

( ) ( )

( )
( )

( )

5 7
2 5 3

7 7 5 36 8
6 4 2

8 8 6 4 2

7
1 16 20 5

1920 322560

64 112 56 78
32 48 18 1

23040 5160960 322560

128 256 160 32 1

5160960

s s s

s s s s
s s s

s s s s

 

 



 
+ + + − + − 

 

− + − + 
+ + − + − + 
 

− + − +
+

 

(84) 

 

when 1s =  In equation (84), then we obtain the present value function. 

 
2 4 8 6 5 3 7

2 4 6 8 3 5 7 4 6 8

5 7

1 3 35 10 10 3 35
1

1 4 192 5160960 23040 1920 24 322560

4 15 56 5 21 6 28

4 192 23040 5160960 24 1920 322560 192 23040 5160960

7

1920 32

v e
i

       


         

 

−    
= = = + + + + − + + + +   

+    

     
+ + + − + + + + +     

     

− +
6 8 7 88 232

2560 23040 5160960 322560 5160960

      
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   
 (85) 

 

We can now define some life table structures using equation (85) as follows. 

Recall that ( )
xT x s s xf s p +=   Is the death density of the random lifetime xT , then we 

write   

( ) ( )
0

x

x

T s

Te e f s ds
 



− −= E        

 (85a) 

Following, Souza (2019), the actuarial present value of a whole life annuity benefit of 1 

is defined as 

( )
0

x s x

sa e dsp


−=          

 (85b) 
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(85b) 

The actuarial present value of the whole life insurance benefits of 1 is defined as 

( )
0

x s s x

s
xA e dsp  +
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−=         

 (86) 
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(87) 

As 0 →  in (86), we obtain, 

( ) 0

0 0

s

x
x x d

x s xe p ds e ds
 +

− − −
= =       

 (88) 

The discrete whole life annuity is given as 
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The discrete whole life annuity is given by 
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In fixing the premium rates, the actuary should observe the technical basis embodied in 

assumptions (Anggraeni, Rahmadani, Utama & Handayani. 2023). However, in Cruz 

(2019), at the policy's inception, the basis observed at this material time is defined as 

first-order basis. For the life insurer to remain solvent, premiums are expected to cover 
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benefits paid to the insured and other expenses incurred on the policy. Consequently, the 

benchmark is to compute premiums in line with the equivalence principle. The random 

variable of interest for the premium computation is the future loss random variable 

; 0s s  . The future loss random variable is the difference between the present value 

of future benefits and expenses and the present value of future premium. At the outset 

of the contract, 0s = . According to the equivalence principle, the premium is computed 

as  

 

( ) ( ) ( )            0   sE PresentValueof futureoutgo PresentValueof futureincome= − =E E

 (91) 

 

Under this principle, the premium and benefits will balance out on the average. Therefore, 

for a whole life policy incepted on a life aged x with a sum assured of b  payable on the 

death of the insured, the premium 
x is to be paid by the insured as a life continuous 

annuity. Under the equivalence principle, the premium is computed as 
x

x

x

A
b

a
 =   

At the inception of the policy, the insured and the insurer will know the premium amount 

x and the death benefits amount b  
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As a hedging strategy, the m-year pure endowment used to offset the losses from the m-

year term insurance issued to a life aged x  Before any mortality shock is given by 

1
:

m

m x
x

m

A v p=          

 (93) 
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From (94), 
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 (101) 
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where  

0

s

x d

s xp e
 +−

=         (103) 

 

The equations in (84) are the only principal equations used in computing all mortality 

functions. 

 

4. Conclusion 

 

This paper attempts to model the continuous present and future value function with more 

sophisticated analytical derivations and apply it to define some life table functions. Life 

table functions such as the force of mortality, survival function used in actuarial valuation 

have been estimated using polynomials except the present value function. The modelling 

of the present value problem and applications in the actuarial life table under the 

Chebyshev polynomial framework has been most recently developed. The method used 

in this paper is an alternative to the commonly used method for present value 

computations but is far more advanced. The strong point of this technique in estimating 

the present value function is the novelty involved. Using the power series based on 

orthogonal Chebyshev polynomial, the necessity to compute and implement a robust 

discount function is guaranteed. 
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