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Abstract 

 

This study investigates the effect of population age distribution on Sri Lanka’s ecological 

footprint (EF) from 1980 to 2022, integrating demographic variables into the 

Environmental Kuznets Curve (EKC) framework. Using the Autoregressive Distributed Lag 

(ARDL) bounds testing approach, the analysis reveals a U-shaped relationship between 

GDP and EF, contradicting the traditional inverted U-curve hypothesis. The working-age 

population (15–64 years) exerts the most significant long-term pressure on the EF, with 

an impact five times greater than that of the young population (0–14 years). In contrast, 

the elderly population (65+ years) shows a negligible negative association. Short-run 

dynamics highlight rapid equilibrium restoration (error correction term = -3.33), with 

lagged GDP terms exacerbating EF and GDP² terms mitigating it. The findings underscore 

the environmental cost of economic productivity driven by the working-age cohort and 

suggest that Sri Lanka’s current development trajectory risks accelerating ecological 

degradation. Policy recommendations include green employment initiatives, sustainable 

urban planning, and carbon taxation to align economic growth with sustainability. This 

study contributes to developing-country literature by demonstrating the applicability of 

demographic-EKC frameworks and advocating for age-sensitive environmental policies. 

 

Keywords: Ecological footprint, Population age distribution, Environmental Kuznets 

Curve, ARDL bounds test 

 

1. Introduction 

 

The interaction between demographic transitions and environmental sustainability has 

emerged as a pivotal area of study in recent decades, particularly in the context of ageing 

global populations and rising economic activities. A key indicator used to evaluate the 

environmental impact of human actions is the ecological footprint (EF), which measures 

the extent of pressure exerted on ecosystems due to human consumption and activities 

(Global Footprint Network, 2025). Sri Lanka, a developing country undergoing significant 

demographic shifts, offers a compelling example to explore the relationship between age 

distribution and ecological footprint. This research investigates how the age composition 

of the population, categorized into young dependents (ages 0–14), the working-age group 

(ages 15–64), and elderly dependents (ages 65 and above), affects the ecological 

footprint in Sri Lanka. Additionally, the study incorporates the influence of economic 

growth, as reflected by gross domestic product (GDP), to provide a more comprehensive 

understanding of the dynamics at play. 

Background and Context 

Sri Lanka has experienced profound demographic and economic changes over the past 

few decades, reshaping the nation’s societal and environmental landscape. A notable 

shift in the population's age structure has occurred, driven by declining fertility rates and 
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increasing life expectancy. This demographic transition has resulted in a growing 

proportion of older adults within the population (World Development Indicators, 2025). 

Simultaneously, the nation’s economic growth has accelerated, accompanied by 

heightened resource consumption and escalating environmental degradation, sparking 

concerns over achieving sustainable development goals. The ecological footprint, which 

quantifies the biologically productive land and water area required to sustain human 

consumption and absorb waste, is a critical measure of environmental strain 

(Wackernagel & Rees, 1996). Analyzing how demographic factors, particularly shifts in 

age distribution, influence the EF is crucial for crafting policies that balance 

environmental conservation with economic advancement. 

The Environmental Kuznets Curve (EKC) hypothesis provides a framework to study the 

interplay between economic growth and environmental degradation, suggesting an 

inverted U-shaped relationship where environmental damage initially rises with economic 

expansion but eventually declines as economies mature (Grossman & Krueger, 1995). 

However, the influence of demographic variables, especially age distribution, on this 

relationship remains insufficiently examined. Research indicates that different age 

groups exhibit distinct consumption behaviors and environmental impacts (Cole & 

Neumayer, 2004; Liddle, 2014). For example, the working-age population, being more 

economically active, tends to drive higher resource consumption and waste production. 

In contrast, older populations generally demonstrate lower consumption levels, 

potentially exerting a less significant environmental impact. Understanding these 

dynamics is essential for developing targeted strategies that address environmental 

challenges while supporting sustainable economic growth. 

Research Problem and Objectives 

Despite the extensive body of literature examining the Environmental Kuznets Curve 

(EKC) and the impact of demographic factors, there remains a noticeable gap in research 

specifically addressing Sri Lanka. Most existing studies have predominantly focused on 

developed countries or regions with distinct demographic and economic characteristics, 

such as those analyzed by Alam et al. (2012) and Shahbaz et al. (2016). This lack of 

country-specific research highlights the importance of conducting an analysis tailored to 

Sri Lanka's unique socioeconomic and demographic dynamics. To bridge this gap, the 

present study explores the following research questions. 

How does the population's age distribution (young, working-age, and old dependents) 

influence the ecological footprint in Sri Lanka? 

What is the relationship between economic growth (GDP) and ecological footprint in Sri 

Lanka, and does it align with the EKC hypothesis? 

Are there short-term and long-term dynamics between these variables, and what are their 

policy implications? 

The primary objective of this study is to empirically analyze the impact of age distribution 

on Sri Lanka's ecological footprint, using time-series data from 1980 to 2022. By 

employing the Autoregressive Distributed Lag (ARDL) bounds testing approach, the study 

captures long-run and short-run relationships among the variables, ensuring robust and 

reliable results. 
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Significance of the Study 

This research significantly contributes to the existing body of literature in several distinct 

ways. Firstly, it offers valuable empirical evidence on the influence of age distribution on 

environmental degradation, addressing a critical yet underexplored area, particularly 

within the context of developing countries. By shedding light on this relationship, the study 

fills an important gap in understanding how demographic factors shape environmental 

outcomes. Secondly, it enhances the Environmental Kuznets Curve (EKC) framework by 

integrating demographic variables, providing a more comprehensive and nuanced 

perspective on the dynamic relationship between economic growth and environmental 

sustainability. This integration allows a deeper exploration of how population 

characteristics interact with economic development to impact environmental conditions. 

Lastly, the findings hold practical relevance for policymakers, particularly in Sri Lanka and 

other similar economies. The research underscores the importance of formulating age-

sensitive environmental policies. For instance, if the analysis reveals that the working-age 

population significantly contributes to an increase in the ecological footprint, targeted 

interventions such as promoting sustainable consumption patterns and advancing green 

technologies among this demographic group could be prioritized to mitigate 

environmental harm effectively. 

Methodology Overview 

The study utilizes time-series data from 1980 to 2022, sourced from the Global Footprint 

Network (2025) and the World Development Indicators (2025). The key variables include 

per capita ecological footprint (EF), per capita GDP, the square of GDP (to test the EKC 

hypothesis), and the ratios of young, working-age, and old populations. The ARDL bounds 

testing approach is employed to examine cointegration and dynamic relationships, as it 

accommodates variables with different orders of integration (Pesaran et al., 2001). 

Additionally, diagnostic tests, stability tests, and Granger causality analysis are conducted 

to ensure the robustness of the results. 

Structure of the Study 

The remainder of the manuscript is organized: Section 2 reviews the relevant literature 

on ecological footprints, demographic changes, and the EKC hypothesis. Section 3 details 

the data and methodology, including the ARDL framework. Section 4 presents the 

empirical results and discussion, covering descriptive statistics, unit root tests, 

cointegration analysis, and causality tests. Section 5 concludes with policy 

recommendations and directions for future research. 

2. Review of Literature 

 

The relationship between demographic dynamics and environmental sustainability has 

garnered significant scholarly attention in recent decades, particularly as global 

populations age and economic activities intensify. This section synthesizes existing 

literature on three interconnected themes: (1) the ecological footprint as a measure of 

environmental impact, (2) demographic factors, particularly age distribution, and their 

environmental implications, and (3) the Environmental Kuznets Curve (EKC) hypothesis 

and its integration with demographic variables. The review concludes by identifying gaps 

in the literature, particularly in the context of developing nations like Sri Lanka, and 

establishes the rationale for the current study. 
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Ecological Footprint: Conceptual Foundations and Empirical Applications 

The ecological footprint (EF), introduced by Wackernagel and Rees (1996), quantifies the 

biologically productive land and water area required to sustain human consumption and 

absorb waste. It is a comprehensive metric for assessing humanity’s demand on 

ecosystems, offering a tangible measure of environmental pressure (Global Footprint 

Network, 2025). Over time, the EF framework has been applied globally to evaluate the 

sustainability of resource use, with studies highlighting disparities between developed 

and developing nations (Borucke et al., 2013; Lin et al., 2018). For instance, developed 

countries often exhibit larger per capita footprints due to higher consumption levels, 

whereas developing nations face challenges balancing economic growth with ecological 

preservation (Galli et al., 2014). 

Recent research has expanded the EF framework to incorporate socioeconomic and 

demographic variables. For example, Caviglia-Harris et al. (2009) linked urbanization and 

income inequality to EF trends in Brazil. Charfeddine and Mrabet (2017) explored the role 

of energy consumption and trade openness in MENA countries. These studies underscore 

the multidimensional drivers of environmental degradation, emphasizing the need for 

context-specific analyses. 

Demographic Factors and Environmental Impact 

Demographic changes, including population growth, urbanization, and age structure 

shifts, are critical determinants of environmental outcomes. The role of population size in 

driving resource depletion has been widely debated since Ehrlich and Holdren’s (1971) 

IPAT (Impact = Population × Affluence × Technology) model. However, contemporary 

research emphasizes the nuanced effects of age distribution, particularly the proportions 

of young, working-age, and elderly populations (Cole & Neumayer, 2004; Liddle, 2014). 

Age Distribution and Consumption Patterns 

The working-age population (ages 15–64) is often associated with heightened 

environmental pressure due to greater economic activity, energy consumption, and 

resource utilization. Liddle (2014) found that a 1% increase in the working-age share 

elevated CO₂ emissions by 0.6% in OECD countries, attributing this to higher production 

and consumption levels. Similarly, O’Neill et al. (2012) demonstrated that aging 

populations in developed nations could reduce emissions over time, as older individuals 

typically consume less energy-intensive goods. 

Conversely, young populations (ages 0–14) may exert indirect environmental impacts 

through household consumption. For instance, Jiang and Hardee (2011) noted that larger 

youth cohorts in developing countries drive demand for education, healthcare, and 

housing, indirectly increasing resource use. However, the environmental effects of elderly 

populations (65+) remain contested. While some studies suggest reduced consumption 

patterns among the elderly (Zagheni, 2011), others highlight increased healthcare-

related energy use (Meneses & Palacio, 2020). 

Regional and Contextual Variations 

The environmental implications of age distribution vary across regions. In sub-Saharan 
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Africa, rapid population growth and a high youth dependency ratio have exacerbated 

deforestation and soil degradation (Bilsborrow & DeLargy, 1991). In contrast, aging 

societies in Europe and Japan have seen slower growth in energy demand but face 

challenges in sustaining pension systems, which may indirectly influence environmental 

policies (Dalton et al., 2008). Few studies have examined these dynamics in South Asia, 

particularly in Sri Lanka, where demographic transitions and economic development 

intersect uniquely. 

The Environmental Kuznets Curve (EKC) Hypothesis 

The Environmental Kuznets Curve (EKC) hypothesis, introduced by Grossman and 

Krueger (1995), suggests an inverted U-shaped relationship between economic growth 

and environmental degradation. During the initial stages of industrialization and 

urbanization, pollution levels rise; however, technological progress and policy measures 

reduce environmental harm beyond a certain income threshold. Empirical studies testing 

the EKC have produced mixed results, varying by environmental indicators and regional 

contexts (Stern, 2004). In Sri Lanka, the observed U-shaped EKC deviates from the 

traditional inverted U-curve, which predicts that environmental degradation declines as 

economies mature. This deviation in developing nations like Sri Lanka may be attributed 

to structural economic transitions and delayed adoption of green technologies. During the 

early industrialization phase (1980s–2000s), Sri Lanka’s ecological footprint (EF) 

declined due to agricultural modernization and light manufacturing. However, post-2010 

economic growth, driven by resource-intensive sectors such as construction and tourism, 

reversed this trend, increasing environmental strain (Al-Mulali et al., 2015). Similar trends 

are evident across South Asian economies, where rapid urbanization and reliance on 

fossil fuels undermine early environmental improvements (Sarkodie & Strezov, 2019; 

Ecological Indicators). Furthermore, weak regulatory frameworks and inadequate 

investments in renewable energy exacerbate this U-shaped trajectory (Usman et al., 

2023). 

Integrating Demographic Variables into the EKC Framework 

Recent studies have expanded the EKC model to include demographic variables. For 

example, Shahbaz et al. (2016) incorporated urbanization and population density into an 

EKC analysis for Malaysia, finding that urban sprawl exacerbated CO₂ emissions. 

Similarly, Alam et al. (2016) demonstrated that population growth skewed the EKC 

relationship in Brazil and Indonesia, delaying the transition to sustainable development. 

However, the integration of age distribution into EKC models remains limited. Notable 

exceptions include Liddle and Lung (2010), who found that aging populations in 17 OECD 

countries reduced energy-related emissions, supporting the EKC hypothesis. Conversely, 

Buzkurt and Akan (2014) reported a U-shaped relationship between GDP and EF in 

Turkey, with a rising working-age population amplifying environmental pressure. These 

conflicting findings highlight the need for further research, particularly in developing 

economies with ongoing demographic and economic transitions. 

Gaps in the Literature and Rationale for the Study 

Despite the growing academic interest in the relationship between demographic changes 

and environmental outcomes, several critical gaps remain unaddressed: 
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Focus on Developing Countries: A significant proportion of existing studies predominantly 

focus on developed nations or regions such as the OECD and MENA, often sidelining the 

unique contexts of South Asian countries (Farhani & Rejeb, 2012). Sri Lanka, in particular, 

represents an underexplored case, characterized by its distinctive demographic transition 

marked by declining fertility rates and increasing life expectancy. This unique 

demographic shift warrants closer examination to better understand its implications for 

environmental sustainability. 

Role of Age Distribution Dynamics: While considerable attention has been given to 

population size and urbanization in environmental studies, the influence of age-specific 

cohorts, such as the young, working-age population, and the elderly, on environmental 

factors like the ecological footprint (EF) remains insufficiently studied. This gap is 

especially pronounced in time-series analyses, where the interplay between age 

distribution and environmental outcomes has been largely overlooked. 

Methodological Constraints: Many existing studies rely heavily on cross-sectional data or 

traditional cointegration techniques, often inadequate for capturing both short-term and 

long-term dynamics, particularly in studies with small sample sizes (Pesaran et al., 2001). 

These methodological limitations hinder a comprehensive understanding of the nuanced 

relationships between demographic variables and environmental outcomes. 

This study addresses these research gaps by investigating the relationship between Sri 

Lanka’s age distribution and ecological footprint from 1980 to 2022, employing the 

Autoregressive Distributed Lag (ARDL) bounds testing approach. By incorporating 

demographic variables into the Environmental Kuznets Curve (EKC) framework, this 

research offers fresh insights into how age-specific consumption and production patterns 

influence environmental outcomes in a developing economy, contributing to the existing 

body of knowledge. 

The literature underscores the complex interplay between demographic changes, 

economic growth, and environmental sustainability. While the EKC hypothesis offers a 

foundational framework, its integration with age distribution variables remains nascent, 

particularly in developing nations. Sri Lanka’s demographic and economic trajectory 

provides a compelling context to explore these dynamics, offering policy-relevant insights 

for sustainable development. The subsequent sections build on this foundation, 

employing advanced econometric techniques to unravel the temporal and causal 

relationships underpinning Sri Lanka’s ecological footprint. 

3. Materials and Methods 

 

Variables and data 

The EKC approach is utilized to comprehensively understand both long-term and short-

term dynamics, as well as the causal relationships between ecological footprint, gross 

domestic product, and the age distribution of the population in Sri Lanka. This approach 

uses three key variables to represent the age distribution percentages of young 

dependents, the working-age population, and old dependents in Sri Lanka as indicator 

variables. 

This study uses the per capita ecological footprint as the dependent variable. Per capita 

gross domestic product, square of gross domestic product, young population (Age 0 -14) 
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ratio, working-age population ratio (Age 15 – 64), and old population (Age 65+) are 

explanatory variables. 

Table 1- Data (Main Variables) to be Considered for the Study and Data Sources 

Label Variable Definition Unit Source 

EF Ecological 

Footprint (per 

capita)  

Metrics of human 

demand on 

ecosystems 

global 

hectares 

per person 

Global Footprint Network 

(2025) 

GDP Gross 

Domestic 

Product (per 

capita)  

Gross domestic 

product divided by 

midyear 

population 

Constant 

2017 US$ 

World Development Indicators 

(2023) 

YP Young 

population  

Population ages 

0-14 (% of total 

population) 

% World Development Indicators 

(2023) 

WAP Working age 

population 

Population ages 

15-64 (% of total 

population) 

% World Development Indicators 

(2023) 

OP Old population  Population ages 

65 and above (% 

of total 

population) 

% World Development Indicators 

(2023) 

Source: Created by the author 

The study used the time series data of Sri Lanka from 1980 to 2022. The data sources 

with codes of variables are presented in Table 1. Keeping the view with the prime 

objective of the study, the functional form of the model is as follows: 

Per capita ecological footprint = f (Per capita gross domestic product, Square of the per 

capita gross domestic product, young population (Age 0 -14) ratio, Working-age 

population ratio (Age 15 – 64), and old population (Age 65+) ratio). 

The variables are transformed to natural log, and the econometric form of the above 

model is as follows (Eq. (1)): 

𝐿𝑛𝐸𝐹𝑖 = 𝛽0 +𝛽1 𝐿𝑛𝐺𝐷𝑃𝑖 + 𝛽2 𝐿𝑛𝐺𝐷𝑃𝑖2 + 𝛽3 𝐿𝑛 𝑌𝑃𝑖 + 𝛽4 𝐿𝑛𝑊𝐴𝑃𝑖 + 𝛽5 𝐿𝑛𝑂𝑃𝑖 + 𝜀𝑖 Eq(1) 

 

where all the variables are the same as described above, β_(0 ) is the intercept, and β1-

β5 are the coefficients of explanatory variables, and ε_i is the error term. 

Unit root testing 

In the ARDL (Auto Regressive Distributed Lag) approach of cointegration, unit root pre-

testing is not essential because it can test for the presence of cointegration between a 

set of variables of order I(0) or I(1) or a mixture of both. However, the ARDL Bounds Testing 

methodology of Pesaran and Shin (1999) and Pesaran et al. (2001) requires that no 

variable should be integrated of order 2 or I(2), as such data will invalidate the 

methodology. It is therefore justified to test the stationarity of each variable before 

proceeding to the next level of analysis and inference.  
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Cointegration testing using the ARDL bounds testing approach 

The ARDL Bounds Testing technique will examine the potential presence of cointegration 

among the variables under analysis, determining whether they share a long-run 

equilibrium relationship while capturing both long-run and short-run dynamics. This 

method was chosen over traditional cointegration techniques (e.g., Engle-Granger) due to 

its flexibility in handling variables with mixed integration orders (I(0) and I(1)) and its 

robustness in small-sample scenarios (Pesaran et al., 2001). Such features are 

particularly crucial in demographic-environmental research, where data granularity is 

often constrained (Usman et al., 2023). For example, Liddle and Lung (2010) applied the 

ARDL framework to disentangle the effects of age structure on emissions in OECD 

countries, effectively mitigating biases from non-stationary data. The method’s capacity 

to simultaneously estimate short- and long-run dynamics makes it especially relevant to 

Sri Lanka’s evolving economic and demographic context. 

The ARDL approach offers several advantages over traditional cointegration methods: (i) 

it is highly adaptable, enabling the analysis of variables integrated at I(0), I(1), or a 

combination of both; (ii) its single-equation setup simplifies implementation and 

interpretation; (iii) it allows for the use of different lag lengths for different variables within 

the model; (iv) it is well-suited for small sample sizes; (v) it provides unbiased estimates 

of long-run relationships and parameters; and (vi) it effectively addresses issues of 

autocorrelation and endogeneity (Harris & Sollis, 2005; Jalil & Ma, 2008). 

Following Rahman (2017) and Shahbaz et al. (2013), for bounds testing of cointegration, 

the ARDL model used in this study is: 

∆𝐿𝑛𝐸𝐹 = ∝ + ∑ 𝛽𝑖

𝑃

𝑖=1
∆𝐿𝑛𝐸𝐹𝑡−𝑖 + ∑ 𝛾𝑖

𝑞

𝑖=1
∆𝐿𝑛𝐺𝐷𝑃𝑡−𝑖 + ∑ 𝛿𝑖

𝑅

𝑖=1
∆𝐿𝑛𝐺𝐷𝑃2

𝑡−𝑖

+ ∑ 𝜃𝑖

𝑠

𝑖=1
∆𝐿𝑛𝑌𝑃𝑡−𝑖 +  ∑ 𝜎𝑖

𝑇

𝑖=1
∆𝐿𝑛𝑊𝐴𝑃𝑡−𝑖 + ∑ 𝜙𝑖

𝑈

𝑖=1
∆𝐿𝑛𝑂𝑃𝑡−𝑖 + ∅0𝐿𝑛𝐸𝐹𝑡−𝑖

+ ∅1𝐿𝑛𝐺𝐷𝑃𝑡−𝑖 + ∅2𝐿𝑛𝐺𝐷𝑃2
𝑡−𝑖 + ∅3𝐿𝑛𝑌𝑃𝑡−𝑖 + ∅4𝐿𝑛𝑊𝐴𝑃𝑡−𝑖 + ∅5𝐿𝑛𝑂𝑃𝑡−𝑖 + 𝜀𝑖 

          

 Eq. (2) 

 

where LnEF, LnGDP, LnGDP2, Ln YD, Ln WA and Ln OD are variables of the study, and ε_i 

is a "well-behaved" random disturbance term, ε_i is serially independent, homoscedastic 

and normally distributed. 

The model in Eq. (2) is a particular type of Error Correction Model (ECM), where the 

coefficients are not restricted. Pesaran et al. (2001) term it as a "conditional ECM". In Eq. 

(2), the three terms with summation signs represent the error correction dynamics and 

the second part (terms with ∅_s) correspond to the long-run relationship (Shahbaz, 

Shrestha and Chowdhury et al., 2013, 2005). 

The appropriate values for the maximum lags, p, q, R, s, T,and u will be determined using 

one or more of the "information criteria" – AIC, SC (BIC), HQ, etc. 

Under the above equation, the null and alternative hypotheses are as follows: 

H0. No cointegration exists. 
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H1. Cointegration exists. 

The null hypothesis is tested by conducting an F-test for the joint significance of the 

coefficients of the lagged levels of the variables. Thus 

H0: ∅0 = ∅1 = ∅2 = ∅3 = ∅4 = ∅5 = 0 

H1: at least one ∅𝑖 ≠ 0, where i = 0,1,2,3,4,5 

The distribution of the test statistics is purely non-standard and exact critical values for 

the F-test are not available for an arbitrary mix of I(0) and I(1) variables. However, Pesaran 

et al. (2001) developed bounds on the critical values for the asymptotic distribution of 

the F-statistic. For various situations (e.g., different numbers of variables, (k + 1)), they 

supply lower and upper bounds on the critical values. However, since the study is based 

on a relatively smaller sample size, we shall also compare the computed F-test value with 

the bounds critical value tables provided by Narayan (2005) as these are more suitable 

for small samples. 

In each case, the lower bound assumes that all variables are I(0), and the upper bound 

assumes that all variables are I (1). If the computed F-statistic falls below the lower bound, 

the variables are I (0), so no cointegration is possible. If the F-statistic exceeds the upper 

bound, we conclude that we have cointegration. Finally, if the F-statistic falls between the 

bounds, the test is inconclusive, and we will have to resort to other cointegration 

techniques. 

Following Giles (2013), it is also necessary to conduct, as a cross-check, a "Bounds t-test" 

as stated below: 

H0: ∅0, against H1: ∅0< 0. 

The decision rule for this test is as follows: 

If the t-statistic for 〖LnEF〗_(t-i) in Eq. (1) is greater than the "I (1) bound" tabulated by 

Pesaran et al. (2001; pp.303–304), which would support the conclusion that there is a 

long-run relationship between the variables. If the t-statistic is less than the "I (0) bound", 

we would conclude that the data are all stationary. Short-run parameters are estimated 

using the regular error correction mechanism (ECM) as depicted in Eq. (3) below: 

∆𝐿𝑛EF= ∝ + ∑ 𝛽𝑖
𝑃
𝑖=1 ∆𝐿𝑛𝐸𝐹𝑡−𝑖 + ∑ 𝛾𝑖

𝑞
𝑖=1 ∆𝐿𝑛𝐺𝐷𝑃𝑡−𝑖 + ∑ 𝛿𝑖

𝑅
𝑖=1 ∆𝐿𝑛𝐺𝐷𝑃2

𝑡−𝑖 +

∑ 𝜃𝑖
𝑠
𝑖=1 ∆𝐿𝑛𝑌𝑃𝑡−𝑖 +                 ∑ 𝜎𝑖

𝑇
𝑖=1 ∆𝐿𝑛𝑊𝐴𝑃𝑡−𝑖 + ∑ 𝜙𝑖

𝑈
𝑖=1 ∆𝐿𝑛𝑂𝑃𝑡−𝑖 +  +𝜏𝐸𝐶𝑇𝑡−1 + 𝜀𝑡 

Eq. (3)  

  
The error correction model results indicate the speed of adjustment back to the long run 

equilibrium after a short run shock. ECM integrates the short-run and long-run coefficients 

without losing long-run information. Under the ECM technique, the long-run causality is 

depicted by the negative and significant value of the error correction term (ECT) 

coefficient τ, and the short-run causality is shown by the significant value of the 

coefficients of other explanatory variables (Rahman & Mamun, 2016; Shahbaz et al., 

2013). 

Diagnostic tests of the model 
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One of the most crucial assumptions in the ARDL Bounds Testing methodology is that Eq. 

(2) errors must be serially independent and normally distributed. Therefore, both 'Q-

Statistics' and 'Breusch-Godfrey Serial Correlation LM test' will be used for testing Serial 

Independence and 'Jarque-Bera' test for testing Normality of the model errors. The 

heteroscedasticity will also be checked using the 'Breusch-Pagan-Godfrey' test. 

𝑌𝑡 = 𝑔0 + 𝑎1𝑌𝑡−1 + ⋯ + 𝑎𝑝𝑌𝑡−𝑝 + 𝑏1𝑋𝑡−1 + ⋯ + 𝑏𝑝𝑋𝑡−𝑝 + 𝑢𝑡 

Eq. (4) 

𝑋𝑡 = ℎ0 + 𝑐1𝑋𝑡−1 + ⋯ + 𝑐𝑝𝑋𝑡−𝑝 + 𝑑1𝑌𝑡−1 + ⋯ + 𝑑𝑝𝑌𝑡−𝑝 + 𝜏𝑡 

Eq. (5) 

 

Then, testing H0: b1 = b2= … = bp = 0, against H1: X Granger causes Y. Similarly, testing 

H0: d1 = d2= … = dp = 0, against H1: Y Granger causes X. In each case, a rejection of the 

null hypothesis implies there is Granger causality. Note that X and Y series are in 'level' 

form, which means that the data is not in 'difference' form, where ut and τ_t are white 

noise error terms. In the long-run equilibrium, these errors should be zero. In these two 

equations, the Yt and Xt are co-integrated when at least one of the coefficients bi or di is 

statistically different from zero. If bi ≠ 0 and di = 0, Xt will lead Yt in the long run. The 

opposite will occur if di ≠ 0 and bi = 0. If both bi ‡ 0 and di ‡ 0, a feedback relationship 

exists between Yt and Xt. However, if both bi = 0 and di= 0, then no cointegration exists 

between Yt and Xt such conflicting results (with prior result of ARDL) can come out if the 

sample size is too small to satisfy the asymptotic that the cointegration and causality tests 

rely on (Giles, 2011). The coefficients ai's and ci's represent the short-run dynamics 

between Yt and Xt. If ai's are not all zero, movements in the Xt will lead to Yt in the short 

run, and conversely, if ci's are not all zero, movements in the Yt will lead to Xt in the short 

run. 

Following Toda-Yamamoto (1995) procedure, the Granger Causality among the variables 

under an augmented Vector Autoregression (VAR) framework will be estimated. We will 

determine the appropriate maximum lag length for the variables in the VAR using the 

usual methods. Specifically, the basis of the choice of lag length is on the standard 

information criteria, such as AIC. We will also ensure that VAR is well specified; that is, 

VAR does not contain serial correlation in the residuals. 

Stability test of the model 

Ensuring the 'dynamic stability' of any model with an autoregressive structure is 

obligatory. The model's stability will be checked using the Recursive CUSUM and CUSUM 

of squares (Brown et al., 1975) tests. These tests are also suggested by Pesaran and 

Pesaran (1997) for measuring the parameter stability. 

Granger causality test  

If two or more time series are cointegrated, Granger causality between them must be 

either one-way or in both directions. However, the converse is not true (Giles, 2011). 

Again, according to Granger (1969), measuring the correlation between variables is 

insufficient to construct a complete understanding of the relationship between two or 

more time series. This is because some correlations may be spurious and useless, as 

there might be a hint of a third variable that cannot be accounted for. Further, only 
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correlation does not confirm causation between (/among) variables. That is, if we get our 

series to be cointegrated, then we must cross-check causality results. It can test for the 

absence of Granger causality by estimating the following VAR model: 

4. Results and Discussion 

 

Table 2 presents the descriptive statistics of the study variables. The mean values of 

variables vary widely, from 0.009 for LnEF to 11.12 for LnGDP2, reflecting significant 

differences. Median values are generally close to the means, indicating moderate 

symmetry, though LnEF's lower mean suggests slight left-skewness. LnGDP2 shows the 

highest variability (SD = 1.40), while LnWAP has the least (SD = 0.02), indicating differing 

data spreads. LnEF spans -0.123 to 0.099, while LnOP ranges from 0.646 to 1.056, 

highlighting dispersion differences. LnEF and LnWAP exhibit moderate negative skewness 

(-0.64, -0.81), while other variables show mild positive skewness. All kurtosis values are 

below 3, indicating platykurtic distributions. The Jarque-Bera test suggests normality for 

most variables (p > 0.05), except LnWAP (p = 0.045), which may require further review. 

 

Table 2 – Descriptive Statistics of the Study Variables 

 LnEF LnGDP LnGDP2 LnYP LnWAP LnOP 

 Mean  0.009026  3.328810  11.12358  1.449660  1.809918  0.825189 

 Median  0.033428  3.290566  10.82782  1.425305  1.819347  0.797191 

 Maximum  0.099033  3.652798  13.34294  1.561566  1.829569  1.056235 

 Minimum -0.123286  3.006478  9.038909  1.355840  1.771808  0.646502 

 Std. Dev.  0.070014  0.208860  1.399850  0.064074  0.020046  0.111010 

 Skewness -0.639091  0.206222  0.267799  0.461322 -0.807897  0.501030 

 Kurtosis  1.910668  1.714416  1.722372  1.825109  2.075810  2.385530 

       

 Jarque-Bera  5.053203  3.265915  3.438564  3.998360  6.207975  2.475544 

 Probability  0.079930  0.195351  0.179195  0.135446  0.044870  0.290030 

       

 Sum  0.388129  143.1388  478.3141  62.33536  77.82648  35.48312 

 Sum Sq. Dev.  0.205883  1.832152  82.30236  0.172431  0.016877  0.517574 

       

 Observations  43  43  43  43  43  43 

Source: Author's calculations 

 

Unit root testing 

 

The Levin, Lin & Chu,  Im, Pesaran and Shin,  ADF – Fisher, and  Phillips Peron - Fisher 

unit root testing results are displayed in the following table (Table 3): 

 
Table 3 – Results of Unit Root Tests.  

Test Level 1st Deference Integration  

 Intercept Intercept and 

Trend 

Intercept Intercept and 

Trend 

 

Levin, Lin & 

Chu  

-0.72363 -5.74761* -2.25882** -3.50357* I (1) 



 
 

International Journal of Social Statistics - USJ  
Volume 02 | Issue 01 | March, 2025 

91 | P a g e  

 

Im, Pesaran 

and Shin W-

stat  

-0.50709 -3.10527* -1.88342** -3.61613* I (1) 

ADF - Fisher 

Chi-square 

 20.5586***  46.0230*  20.8676**  45.1584* I (1) 

PP - Fisher 

Chi-square 

 5.61993  1.37403  40.7041*  31.6233* I (1) 

Source: Author's calculation 

 

The analysis of the above estimates indicates that all variables in the model become 

stationary after taking their first difference at a 1% significance level, classifying them as 

being of order I(1). However, except for the Phillips-Perron Fisher test, all variables in the 

model are stationary at their levels at a 1% significance level. This implies that the model 

exhibits stationarity at the level itself. Consequently, the variables could belong to the I(0) 

or I(1) category. This mixed and somewhat ambiguous order of integration among the 

variables provides a strong rationale for employing the ARDL (Autoregressive Distributed 

Lag) approach to cointegration analysis. Furthermore, as mandated by the ARDL bounds 

testing methodology introduced by Pesaran and Shin (1999) and further elaborated by 

Pesaran et al. (2001), the results of the unit root tests confirm that none of the variables 

are integrated of order I(2). 

 

ARDL model estimation 

 

The Akaike Information Criterion (AIC) has been used to determine the optimum lag length 

of the model. The selected model is ARDL (3, 4, 4, 4, 4, 4). Therefore, the optimum lag 

lengths of the variables LnEF, LnGDP, LnGDP2, LnYP, LnWAP, and LnOP are: p = 3, q = 4, 

R = 4, s = 4, T = 4 and u = 4, respectively. 

 

Diagnostic tests of the model 

 

The model demonstrates an excellent fit, successfully passing all diagnostic evaluations. 

The R-squared value of 0.939596 (Adjusted R-squared: 0.856540) indicates that the 

model effectively explains approximately 93% of the dependent variable variations. In 

comparison, the remaining 7% are attributed to the error term. Furthermore, the Durbin-

Watson (DW) statistic of 2.1751 confirms the absence of spurious relationships in the 

model. 

 

As detailed in Table 4, the model satisfies several critical diagnostic tests. It passes the 
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serial correlation tests, including the Q-Statistics and Breusch-Godfrey Serial Correlation 

LM tests, ensuring no significant autocorrelation in the residuals. The Jarque-Bera test 

confirms the normality of the residuals, while the Breusch-Pagan-Godfrey test verifies that 

the model does not suffer from heteroscedasticity. These results collectively affirm the 

robustness and reliability of the model. 

 

Table 4 -Model diagnostic test results. 

Test Estimate  Probability 

Jarque-Bera test 0.317379 0.8533 

Breusch-Pagan-Godfrey Heteroskedasticity test 25.08236 0.5698 

Breusch-Godfrey Serial Correlation LM test 2.8069 0.2457 

Source: Author's calculation 

 

ARDL bounds test 

 

The model successfully passed all diagnostic evaluations, confirming its robustness and 

reliability, thereby enabling progression to the subsequent analysis phase: conducting the 

bounds test for cointegration. Utilizing the ARDL Bounds Testing approach, the analysis 

yielded an F-test statistic of 7.398421. This value strongly signifies the presence of a 

long-term equilibrium relationship among the variables under consideration. For detailed 

reference, Table 5 presents the comprehensive results, including the critical values 

associated with the bounds test. 

 

Table 4 - F-Bounds Test Estimate and Critical Values  

     
     

Test Statistic Value Signif. I(0) I(1) 

     
     

F-statistic  7.398421 10%   1.81 2.93 

k 5 5%   2.14 3.34 

  2.5%   2.44 3.71 

  1%   2.82 4.21 

     
     Source: Author's calculation 

 

Significantly, the computed F-statistic exceeds the upper bound critical value (I(1)) at the 

stringent 1% significance level. This finding provides robust evidence supporting the 

existence of cointegration within the model. Consequently, we deduce that the model is 

well-suited for reliable long-run estimation purposes. Furthermore, the F-statistic 

surpasses the upper-bound critical values outlined in the Pesaran and Narayan tables, 

even at the 1% significance threshold. This reinforces the conclusion that there is 

substantial evidence of a long-run relationship among the time-series variables 
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incorporated in the model. 

Long-run and short-run relationships 

 

The long-run equilibrium relationship among the variables estimated using the ARDL (3, 

4, 4,4,4,4) approach is given in the table below: 

 
Table 6 - Estimated long-run coefficients using the ARDL approach. 

     
     

Variable Coefficient Std. Error t-Statistic Prob.    

     
     

LNGDP -14.52688* 4.472314 -3.248179 0.0078 

LNGDP2 2.227142* 0.681332 3.268807 0.0075 

LNYP 2.278627** 0.878383 2.594114 0.0250 

LNWAP 11.34916* 3.302849 3.436172 0.0056 

LNOP -0.208843 0.274713 -0.760223 0.4631 

     
     *, and ** denote statistical significance at the 1%, and 5% levels respectively 

Source: Author's calculation 

 

The analysis reveals that the coefficients for the variables LNGDP, LNGDP2, LNYP, and 

LNWAP are statistically significant, underscoring their importance in the model. The 

Environmental Kuznets Curve (EKC) model illustrates a U-shaped relationship, indicating 

a dynamic interaction between economic growth and environmental impact. The young 

population (LNYP) and the working-age population (LNWAP) play a substantial role in 

increasing the ecological footprint over the long term. Interestingly, the ecological 

footprint driven by the working-age population is five times larger than that of the young 

population, highlighting the significant environmental pressures associated with this 

demographic group. In contrast, the older population exhibits a negative relationship with 

the ecological footprint, suggesting a mitigating effect; however, this negative influence 

lacks statistical significance, implying it may not be a reliable factor in the broader 

context. 

 

Short run dynamics 

 

The following OLS equation is tested for the short-run causality in the ARDL (3, 4, 4,4,4,4) 

framework:  

 

The results derived from Equation (2) are summarized in Table 7 above. These findings 

reveal both short-term dynamics and long-term relationships within the model, as 

demonstrated by the value and sign of the lagged error correction term (ECT), represented 

by the coefficient α[Coint Eq (−1)]. Consistent with theoretical expectations, the ECT 

exhibits a negative sign and is statistically significant at the 1% level. This strongly 
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supports a stable long-term relationship between the dependent and explanatory 

variables. Furthermore, the ECT coefficient, with a value of −3.333015, indicates a robust 

and swift adjustment toward equilibrium, signifying that deviations from the long-term 

path are corrected rapidly. 

 

Table 7 - Estimates from the error correction mechanism. 

     
     

Variable Coefficient Std. Error t-Statistic Prob.    

     
     

D(LNEF (-1)) 1.603724* 0.279371 5.740478 0.0001 

D(LNEF (-2)) 0.768400* 0.193259 3.976003 0.0022 

D(LNGDP) 15.88448* 3.355748 4.733513 0.0006 

D(LNGDP(-1)) 46.02309* 7.360775 6.252479 0.0001 

D(LNGDP(-2)) 24.81015* 7.353819 3.373778 0.0062 

D(LNGDP(-3)) 22.12452* 6.079964 3.638924 0.0039 

D(LNGDP2) -2.156406* 0.484384 -4.451853 0.0010 

D(LNGDP2(-1)) -6.854645* 1.098270 -6.241310 0.0001 

D(LNGDP2(-2)) -3.709570* 1.093630 -3.391980 0.0060 

D(LNGDP2(-3)) -3.369852* 0.911113 -3.698609 0.0035 

D(LNYP) -4.016042 27.05330 -0.148449 0.8847 

D(LNYP(-1)) 29.78106 58.86305 0.505938 0.6229 

D(LNYP(-2)) -125.1209*** 59.10203 -2.117033 0.0579 

D(LNYP(-3)) 136.8135* 30.54661 4.478846 0.0009 

D(LNWAP) 11.30544 52.56621 0.215071 0.8336 

D(LNWAP(-1)) 22.99433 110.9551 0.207240 0.8396 

D(LNWAP(-2)) -199.4204*** 110.4103 -1.806175 0.0983 

D(LNWAP(-3)) 212.1743* 55.02324 3.856085 0.0027 

D(LNOP) -26.83168* 6.808688 -3.940800 0.0023 

D(LNOP(-1)) 8.376796 12.79498 0.654694 0.5261 

D(LNOP(-2)) -23.47046*** 12.83193 -1.829067 0.0946 

D(LNOP(-3)) 23.22902* 6.598442 3.520380 0.0048 

Coint Eq(-1) -3.333015* 0.414790 -8.035424 0.0000 

     
     *, ** and *** denote statistical significance at the 1%, 5% and 10% levels respectively 

Source: Author's calculation 

 

The analysis reveals that the first and second lags of ecological footprint (EF) have a 

significant and positive impact on the current EF in the short term. This suggests that the 

EF of the present year is heavily influenced by the EF levels of the two preceding years. 

Furthermore, the first, second, and third lags of the natural logarithm of Gross Domestic 

Product (LnGDP) significantly increase EF in the short term. In contrast, the first, second, 

and third lags of the square of the natural logarithm of GDP (LnGDP²) significantly 

decrease EF in the short term, providing evidence for the existence of the Environmental 

Kuznets Curve (EKC) effect during this timeframe. 
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Only its second and third lags are statistically significant for the YP variable. The second 

lag negatively influences EF, while the third lag contributes positively. Similarly, for the 

working-age population (WAP), the second and third lags are also significant, with the 

second lag showing an adverse effect on EF and the third lag demonstrating a positive 

effect. 

 

n terms of oil prices (OP), the short-run estimates reveal that OP initially causes a 

significant reduction in EF but leads to an enhancement in EF at the third lag. These 

results underscore the dynamic and variable impacts of the study variables on EF, 

highlighting that their effects vary over the short run. 

 

Stability of the model 

 

To ensure the reliability and robustness of the study's findings, structural stability tests 

are applied to the parameters of the long-run results. These tests utilize the cumulative 

sum of recursive residuals (CUSUM) and the cumulative sum of recursive residuals of 

squares (CUSUMSQ), as recommended by Pesaran and Pesaran (1997). Figures 1 and 2 

illustrate the graphical representations of the CUSUM and CUSUMSQ statistics, 

respectively. 

 

Fig. 1. Plot of CUSUM tests. 

 
Source: Author's calculation 
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Fig. 2. Plot of CUSUM of squares tests. 

 
Source: Author's calculation 

 

The stability of the model is determined by examining whether the CUSUM and CUSUMSQ 

plots remain within the 5% critical bounds. Parameter constancy and model stability are 

indicated if the plots do not breach these boundaries. Upon evaluation, the CUSUM plot 

and the CUSUMSQ plot hover consistently around the zero line.  

 

These results confirm that the model exhibits stability over the study period, with no 

significant systematic changes detected in the coefficients at the 5% significance level. 

Thus, the applied tests validate the model's structural integrity and the reliability of the 

long-run results. 

 

Granger causality test 

 

The study analyzes the long-term relationship between the variables and applies the 

Granger causality test to identify causal links. Given the evidence of cointegration among 

the variables, uni- or bidirectional causality is anticipated. Table 8 presents the short-run 

Granger causality results for the variables. 
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Table 8 - Pairwise Granger Causality Tests 

 LNEF LNGDP LNGDP2 LNYP LNWAP LNOP 

LNEF 

 

 2.23501 2.43831 3.85214** 1.04750 5.27093** 

LNGDP 0.54341 

  

 2.08490 7.96332* 1.49574 9.62972* 

LNGDP2 0.61476 

  

2.07114 

  

 7.63254* 1.31439 9.91434* 

LNYP 0.79484 

  

3.16210** 

  

3.20046** 

  

 0.89774 14.6816* 

LNWAP 4.80092** 

  

4.50349** 

  

4.49502* 

  

5.76948* 

  

 13.6122* 

LNOP 0.38437 

  

5.90916* 

  

5.24042** 

  

7.98995* 

  

1.22269 

  

 

 

*, ** and *** denote statistical significance at the 1%, 5% and 10% levels respectively 

Source: Author's calculation 

 

According to the estimates, only the WAP course is available on EF. However, the EF 

course applies to both YP and OP. All variables are based on YP and OP. However, none 

of the variables are associated with WAP. 

 

Dynamic ordinary least squares (DOLS) 

 

The long-run estimates derived from the ARDL estimator are further validated for 

robustness using an alternative single-equation estimation technique, namely dynamic 

ordinary least squares (DOLS). A key advantage of the DOLS method is its ability to 

account for mixed-order integration of variables within a cointegrated framework, if 

present in the data. The estimation process involves regressing I(1) variables against 

other I(1) variables, incorporating leads (p) and lags of first differences (-p), as well as 

variables integrated at order I(0), along with a constant term. One of the primary benefits 

of DOLS estimation is its effectiveness in addressing two critical issues: potential 

endogeneity and small-sample bias. Moreover, DOLS estimators yield efficient 

cointegrating vectors, and the regression results align with ARDL estimates, as they 

remain significant and maintain consistent variable signs. The results of the DOLS 

regression are presented in Table 9. 

 
Table 9 – DOLS estimates 

     

     
Variable Coefficient Std. Error t-Statistic Prob.   

     
     

LNGDP -13.91807 3.761594 -3.700047 0.0014 

LNGDP2 2.124138 0.562747 3.774590 0.0012 

LNYP 1.848962 0.773553 2.390218 0.0268 

LNWAP 11.29693 2.783977 4.057838 0.0006 
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LNOP -0.476582 0.372746 -1.278568 0.2157 

     
     

R-squared 0.976686     Mean dependent var 0.013616 

Adjusted R-squared 0.954538     S.D. dependent var 0.069602 

S.E. of regression 0.014840     Sum squared resid 0.004405 

Long-run variance 7.31E-05    

     
     

Source: Author’s calculation 

 

The results derived from the DOLS estimates strongly correspond with those obtained 

from the ARDL estimates, providing clear evidence of consistency and reinforcing the 

reliability and robustness of the study's findings. 

 

5. Conclusions 

 

Summary 

This study investigated the impact of population age distribution on Sri Lanka’s ecological 

footprint (EF) from 1980 to 2022, integrating demographic variables into the 

Environmental Kuznets Curve (EKC) framework. Using the Autoregressive Distributed Lag 

(ARDL) bounds testing approach, the analysis revealed critical insights into how age-

specific cohorts—young dependents (0–14 years), the working-age population (15–64 

years), and elderly dependents (65+ years)—interact with economic growth to influence 

environmental outcomes. 

Key findings include: 

Economic Growth and EKC Dynamics: A U-shaped relationship between GDP and 

ecological footprint was identified, contradicting the traditional inverted U-curve 

hypothesis (Grossman & Krueger, 1995). This suggests that environmental degradation 

in Sri Lanka initially decreases with economic growth but worsens beyond a certain 

income threshold, highlighting the need for proactive policy interventions even as the 

economy matures (Shahbaz et al., 2016). 

Demographic Influences: 

The working-age population exerted the most substantial pressure on the EF, with its long-

run impact five times greater than that of the young population. This aligns with global 

patterns where economically active demographics drive resource-intensive consumption 

(Liddle, 2014). 

The young population also significantly increased the EF, likely due to indirect household 

consumption demands (Jiang & Hardee, 2011). 

The elderly population showed a statistically insignificant negative relationship with the 

EF, contrasting with studies emphasizing aging populations’ reduced environmental 

impact in developed nations (Zagheni, 2011). 

Short-Term Dynamics: Short-run adjustments revealed rapid convergence to equilibrium 

(ECT = -3.33), indicating swift corrective mechanisms after economic or demographic 

shocks. Lagged GDP terms exacerbated EF in the short term, while GDP² terms mitigated 
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it, reinforcing the EKC’s applicability to transitional phases (Alam et al., 2016). 

Conclusions 

The study underscores the complex interplay between demographic transitions, economic 

growth, and environmental sustainability in Sri Lanka. Three major conclusions emerge: 

Economic Growth’s Dual Role: While GDP growth initially reduces environmental strain 

through technological advancements or efficiency gains, its long-term trajectory 

exacerbates ecological degradation. This challenges the conventional EKC hypothesis 

and implies that Sri Lanka’s current development path risks accelerating environmental 

harm unless structural changes are implemented (Stern, 2004). 

Working-Age Population as a Key Driver: The working-age cohort’s disproportionate 

impact on the EF highlights the environmental cost of economic productivity. This 

demographic’s high energy consumption, urbanization trends, and resource-intensive 

lifestyles mirror findings from OECD countries (Liddle & Lung, 2010). Sri Lanka’s ongoing 

demographic transition—marked by a growing working-age share—could thus intensify 

ecological pressures unless consumption patterns are redirected toward sustainability. 

Limited Role of Aging Populations: The elderly cohort’s negligible influence on the EF 

contrasts with studies from aging societies like Japan or Europe, where older populations 

reduce emissions (O’Neill et al., 2012). This discrepancy may stem from Sri Lanka’s lower 

elderly consumption levels, limited healthcare infrastructure, or cultural factors favoring 

multi-generational households that dilute per capita resource use (Meneses & Palacio, 

2020). 

Methodological Robustness: The ARDL and DOLS models confirmed the reliability of long-

run estimates, while stability tests (CUSUM/CUSUMSQ) validated the model’s structural 

integrity. Granger causality tests further emphasized bidirectional relationships between 

EF and demographic variables, reinforcing the need for holistic policy frameworks. 

Recommendations 

To harmonize Sri Lanka’s economic ambitions with ecological sustainability, the following 

recommendations are outlined: 

Targeted Interventions for the Working-Age Population 

Green Employment Initiatives: Strengthen and promote industries such as renewable 

energy, sustainable agriculture, and eco-tourism, ensuring economic growth aligns with 

environmental protection goals (Charfeddine & Mrabet, 2017). These initiatives can 

create job opportunities while reducing ecological footprints. 

Sustainable Urban Planning: Prioritize investments in public transportation networks, 

energy-efficient housing solutions, and advanced waste management systems. These 

measures aim to mitigate the adverse environmental effects of urban sprawl and 

enhance the quality of urban living (Shahbaz et al., 2016). 

Awareness Campaigns: Develop and implement educational programs on resource 
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conservation, recycling practices, and adopting low-carbon lifestyles. Such campaigns 

can empower economically active populations to make environmentally responsible 

choices (Cole & Neumayer, 2004). 

Leverage Demographic Dividends 

Youth Education: Incorporate sustainability principles into school curricula to nurture 

environmentally conscious behaviors from an early age. This strategy can instill lifelong 

values of ecological responsibility (Jiang & Hardee, 2011). 

Elderly Inclusion: Foster the involvement of older populations in ecological activities such 

as community gardening, biodiversity conservation, or preserving traditional ecological 

knowledge. Their participation can contribute positively to environmental efforts while 

promoting intergenerational collaboration. 

Reinforce the EKC (Environmental Kuznets Curve) Transition 

Green Taxation: Introduce carbon taxes or levies targeting industries with high pollution 

levels. These financial incentives can drive businesses toward cleaner and more 

sustainable production methods (Buzkurt & Akan, 2014). 

Subsidize Renewable Energy: Provide financial support and incentives for renewable 

energy projects, including solar, wind, and hydroelectric power. Transitioning from fossil 

fuels to renewable energy sources can significantly reduce carbon emissions (Farhani & 

Rejeb, 2012). 

To mitigate the U-shaped EKC effect, Sri Lanka can adopt policies proven successful in 

comparable contexts: 

Renewable Energy Subsidies: Bangladesh’s Solar Home Systems program, which 

subsidized solar panels for 20 million households, reduced carbon emissions by 4.5 

million tons annually (Alam et al., 2021). Sri Lanka could replicate this model to 

decentralize energy access. 

Green Urbanization: Vietnam’s Eco-City Initiative integrated green spaces and public 

transit in Ho Chi Minh City, lowering per capita EF by 12% (World Bank, 2022). 

Circular Economy Incentives: Rwanda’s ban on single-use plastics (2019) cut plastic 

waste by 80%, demonstrating the efficacy of strict regulatory measures (UNEP, 2021). 

Policy Integration 

Demographic-Environmental Nexus: Embed age-specific demographic considerations 

into national policies, such as Sri Lanka’s 2030 Sustainable Development Agenda. This 

integration ensures that policy frameworks address different age groups' unique needs 

and contributions. 

Data-Driven Monitoring: Establish real-time ecological footprint (EF) tracking systems for 

demographic changes. These systems will enable adaptive and evidence-based 

policymaking to respond effectively to evolving challenges (Global Footprint Network, 
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2025). 

Future Research Directions 

Regional Comparisons: Conduct comparative studies across South Asian countries to 

identify common challenges and best practices for addressing demographic and 

environmental issues (Bilsborrow & Delargy, 1991). 

Longitudinal Analyses: Extend research timelines to examine the long-term effects of 

aging trends on Sri Lanka’s environment and economy as the elderly population grows. 

Disaggregated Data: Investigate variations within population cohorts, such as differences 

between urban and rural working-age groups, to develop more targeted and effective 

interventions (Caviglia-Harris et al., 2009). 

Sri Lanka’s journey toward sustainable development hinges on harmonizing its 

demographic evolution with ecological limits. The nation can mitigate ecological 

degradation by addressing the working-age population’s environmental footprint and 

reorienting economic growth toward green pathways while fostering inclusive prosperity. 

This study fills a critical gap in developing-country literature and provides a replicable 

framework for analyzing demographic-environmental linkages in similar contexts. 

References 

 

Alam, M. J., Begum, I. A., & Rahman, S. (2021). Renewable energy adoption in 

Bangladesh: Lessons for sustainable development. Energy Policy, 148, 112015. 

https://doi.org/10.1016/j.enpol.2020.112015  

Alam, M. M., Murad, M. W., Noman, A. H. M., & Ozturk, I. (2016). Relationships among 

carbon emissions, economic growth, energy consumption, and population 

growth: Testing Environmental Kuznets Curve hypothesis for Brazil, China, India, 

and Indonesia. Ecological Indicators, 70, 466–479. 

Al-Mulali, U., Ozturk, I., & Lean, H. H. (2015). The influence of economic growth, 

urbanization, trade openness, financial development, and renewable energy on 

European pollution. Natural Hazards, 79(1), 621–644. 

https://doi.org/10.1007/s11069-015-1865-9  

Bilsborrow, R. E., & Delargy, P. F. (1991). Land use, migration, and natural resource 

deterioration: The experience of Guatemala and the Sudan. Population and 

Development Review, 16(Suppl.), 125–147. 

Borucke, M., Moore, D., Cranston, G., Gracey, K., Iha, K., Larson, J., ... & Galli, A. (2013). 

Accounting for demand and supply of the biosphere’s regenerative capacity: The 

National Footprint Accounts’ underlying methodology and framework. Ecological 

Indicators, 24, 518–533. 

Buzkurt, C., & Akan, Y. (2014). Economic growth and environmental Kuznets curve in 

Turkey: The role of energy consumption and trade openness. International 

Journal of Economics and Finance, 6(12), 107–120. 

https://doi.org/10.1016/j.enpol.2020.112015
https://doi.org/10.1007/s11069-015-1865-9


 
 

International Journal of Social Statistics - USJ  
Volume 02 | Issue 01 | March, 2025 

102 | P a g e  

 

 

Caviglia-Harris, J. L., Chambers, D., & Kahn, J. R. (2009). Taking the “U” out of Kuznets: A 

comprehensive analysis of the EKC and environmental degradation. Ecological 

Economics, 68(4), 1149–1159. 

Charfeddine, L., & Mrabet, Z. (2017). The impact of economic development and social-

political factors on ecological footprint: A panel data analysis for 15 MENA 

countries. Renewable and Sustainable Energy Reviews, 76, 138–154. 

Cole, M. A., & Neumayer, E. (2004). Examining the impact of demographic factors on air 

pollution. Population and Environment, 26(1), 5–21. 

Dalton, M., O’Neill, B., Prakawetz, A., Jiang, L., & Pitkin, J. (2008). Population aging and 

future carbon emissions in the United States. Energy Economics, 30(2), 642–

675. 

Ehrlich, P. R., & Holdren, J. P. (1971). Impact of population growth. Science, 171(3977), 

1212–1217. 

Farhani, S., & Rejeb, J. B. (2012). Energy consumption, economic growth, and CO₂ 

emissions: Evidence from panel data for the MENA region. International Journal 

of Energy Economics and Policy, 2(2), 71–81. 

Galli, A., Wackernagel, M., Iha, K., & Lazarus, E. (2014). Ecological footprint: Implications 

for biodiversity. Biological Conservation, 173, 121–132. 

Global Footprint Network. (2022). National Footprint and Biocapacity Accounts. 

https://www.footprintnetwork.org/  

Grossman, G. M., & Krueger, A. B. (1995). Economic growth and the environment. The 

Quarterly Journal of Economics, 110(2), 353–377. 

Jiang, L., & Hardee, K. (2011). How do recent population trends matter to climate change? 

Population Research and Policy Review, 30(2), 287–312. 

Liddle, B. (2014). Impact of population, age structure, and urbanization on carbon 

emissions/energy consumption: Evidence from macro-level, cross-country 

analyses. Population and Environment, 35(3), 286–304. 

Liddle, B., & Lung, S. (2010). Age-structure, urbanization, and climate change in 

developed countries: Revisiting STIRPAT for disaggregated population and 

consumption-related environmental impacts. Population and Environment, 

31(5), 317–343. 

Meneses, J. A., & Palacio, A. (2020). Aging population and its impact on energy use: 

Evidence from Spain. Energy Policy, 137, 111178. 

O’Neill, B. C., Dalton, M., Fuchs, R., Jiang, L., Pachauri, S., & Zigova, K. (2012). Global 

demographic trends and future carbon emissions. Proceedings of the National 

https://www.footprintnetwork.org/


 
 

International Journal of Social Statistics - USJ  
Volume 02 | Issue 01 | March, 2025 

103 | P a g e  

 

Academy of Sciences, 109(41), 17521–17526. 

Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis 

of level relationships. Journal of Applied Econometrics, 16(3), 289–326. 

 

Sarkodie, S. A., & Strezov, V. (2019). Effect of foreign direct investments, economic 

development, and energy consumption on greenhouse gas emissions in 

developing countries. Science of the Total Environment, 646, 862–871. 

https://doi.org/10.1016/j.scitotenv.2018.07.365  

Shahbaz, M., Loganathan, N., Muzaffar, A. T., Ahmed, K., & Jabran, M. A. (2016). How 

does urbanization affect CO₂ emissions in Malaysia? The application of the 

STIRPAT model. Renewable and Sustainable Energy Reviews, 57, 83–93. 

Stern, D. I. (2004). The rise and fall of the Environmental Kuznets Curve. World 

Development, 32(8), 1419–1439. 

UNEP. (2021). Rwanda’s war on plastic waste: A case study in policy effectiveness. United 

Nations Environment Programme. 

Usman, M., Jahanger, A., Makhdum, M. S. A., Balsalobre-Lorente, D., & Bashir, A. (2023). 

How do financial development, energy consumption, natural resources, and 

globalization affect Arctic countries’ economic growth and environmental 

quality? Advances in Panel Data Analysis in the Energy Sector. 

https://doi.org/10.1016/j.eneco.2022.106161  

Wackernagel, M., & Rees, W. (1996). Our ecological footprint: Reducing human impact 

on the Earth. New Society Publishers. 

World Bank. (2022). Vietnam’s green urbanization: A model for low-carbon cities. World 

Bank Group. 

World Bank. (2023). World Development Indicators. 

Zagheni, E. (2011). The leverage of demographic dynamics on carbon dioxide emissions: 

Does age structure matter? Demography, 48(1), 371–399. 

https://doi.org/10.1016/j.scitotenv.2018.07.365
https://doi.org/10.1016/j.eneco.2022.106161

