

Journal of Intangible Cultural Heritage

JICH (2025), Volume 4 (I)

Reading Winds: Indigenous Navigation Knowledge Among Sri Lankan Fishermen

K. P. Kasun Saranga Kodikara

Department of History & Archaeology, Faculty of Humanities & Social Sciences,
University of Ruhuna, Sri Lanka
*kodikasun99@gmail.com

Abstract

The sophisticated but little-researched maritime traditions that have supported coastal communities for generations are reflected in the indigenous nautical knowledge systems used by Sri Lankan fishermen. Using a mixed-methods approach that includes participant observation during 17 fishing expeditions, ethnographic interviews with 45 elder fishermen, and validation through meteorological data gathered over 18 months, this paper investigates their methods for reading winds, seas, celestial bodies, and biological indicators. This research reveals intricate classifications of winds and sea conditions, sophisticated methods for assessing sensory input and the incorporation of biological insights that allow for accurate navigation and weather forecasting without the need of contemporary equipment. An important complementarity between traditional and scientific knowledge systems is suggested by the study's 78% correlation between indigenous predicting techniques and community-led preservation activities while analysing threats to knowledge continuity, such as changing socioeconomic patterns and climate change. While there are real-world applications for disaster preparedness, climate adaption plans, and sustainable fisheries management, the theoretical ramifications also reach into conventional ecological knowledge frameworks and epistemological debates. This research supports integrative approaches that acknowledge indigenous knowledge as a valuable resource for addressing modern maritime challenges while also contributing to broader scholarly conversations on ethno-navigation by placing these practices within their historical development and cultural context.

Key Words: Maritime, Sri Lanka, Fishermen, Indigenous, Winds

1. Introduction

Dance is a timeless expression of humanity, with many of its forms recognized as Maritime communities around the world have created sophisticated systems of environmental knowledge that have ensured their survival and success for endless generations. Human interaction with maritime habitats is still guided by these indigenous knowledge systems, which serve as both practical instruments and cultural heritage (Berks, 2018). Through decades of careful observation and hands-on practice, Sri Lankan fishermen have established an exceptionally thorough

awareness of local oceanographic and climatic phenomena, making them stand out among these societies (Gunawardena & Silva, 2021).

Even though many fishing communities in Sri Lanka still rely on traditional navigational methods, these knowledge systems are not well-documented in scholarly publications and are not given much credit in modern maritime management frameworks (Amarasinghe et al., 2018). Given the swift socioeconomic shifts impacting coastal communities and the mounting strains of climate change on traditional livelihoods, this study gap is worrisome (Bavinck, 2020).

By methodically recording and confirming the local navigational methods employed by Sri Lankan fisherman, this research seeks to close this gap. It aims to:

1. Record the classification and methods of interpreting wind and sea patterns for navigation.
2. Examine the methods and procedures by which information is passed down through the generations.
3. Verify local observations by contrasting them with data from scientific meteorology.
4. Consider how indigenous and scientific knowledge systems might be integrated.

This study's theoretical framework is based on ethno-navigation research (Lewis, 2021) and traditional ecological knowledge (TEK) scholarship (Berks, 2018; Inglis, 2023). While ethno-navigation studies shed light on the methods and mental processes used in indigenous wayfinding, TEK offers a lens through which to view how ecological knowledge is ingrained in cultural practices and organisations. By combining both viewpoints, our study adds to the expanding corpus of work that acknowledges indigenous knowledge as living knowledge systems with current significance rather than as historical artefacts (Johnson et al., 2019).

2. Literature Review

2.1 Indigenous Knowledge Systems and Maritime Navigation

One of humanity's greatest accomplishments is indigenous maritime navigation, which allowed people to navigate large oceanic areas precisely long before contemporary technologies were developed (Gladwin, 2022). Studies of Polynesian and Micronesian wayfinding traditions are especially abundant in the literature on indigenous navigation. While Genz et al. (2019) described the extensive navigational skills of Marshallese seafarers who decipher intricate patterns of wave refraction to pinpoint islands beyond the horizon, Finney's (2018) ground-breaking work recorded the star compass systems utilized by Polynesian navigators.

Over the past few decades, there has been a substantial evolution in the theoretical methodologies used to analyse indigenous knowledge systems. Without acknowledging their empirical validity, early anthropological research frequently recorded these systems as cultural oddities (Lewis, 2021). However, indigenous knowledge is increasingly being viewed by modern scholarship as complex epistemological systems with their own empirical underpinnings and internal logic

(Berkes, 2018; Whyte, 2021). This change is indicative of a larger academic decolonization of knowledge that recognizes the value of various modes of knowledge (Agarwal, 2022).

Scholars and practitioners are becoming more aware of the complementary nature of indigenous and scientific knowledge systems, which has led to an increase in interest in their integration. According to Bohensky and Maru (2020), respect for knowledge sovereignty, acknowledgement of various epistemological underpinnings, awareness of power dynamics, and an emphasis on process rather than product are the four essential elements that enable successful knowledge integration. Like this, Tengö et al. (2021) suggested a multiple evidence base strategy that preserves the contextual integrity of several knowledge systems while arranging them side by side.

Johannes's (2022) research on Pacific Island fisheries management in maritime contexts showed how indigenous knowledge systems frequently include in-depth comprehension of species behaviour, habitat needs, and ecological relationships that supplement scientific data collecting. According to Thorton and Scheer (2018), Tlingit and Haida fishermen in Alaska can foresee and react to environmental changes with remarkable accuracy because they have a thought understanding of the oceanic and atmospheric conditions.

2.2 Sri Lankan Maritime History and Cultural Context

Sri Lanka's strategic location along historic Indian Ocean trade routes has influenced its marine traditions for millennia (Perera, 2019). With cross-cultural linkages to Southeast Asia, the Arabian Peninsula, and East Africa, archaeological evidence suggests sophisticated marine operations as early as the third century BCE (Somadeva, 2021). Sri Lanka's unique maritime cultures, which combine aspects of intercultural contact with indigenous customs, have been shaped by these historical ties (Gunawardena, 2020).

Beyond simple sustenance, ocean navigation has cultural significance in Sri Lankan coastal civilisations that encompasses social organization, spiritual beliefs, and collective identity (Siva, 2018). While Fernando (2022) detailed the specific social roles connected to navigation expertise in eastern fishing villages, Stirrat (2019) revealed complex rituals carried out before to fishing voyages in western coastal communities. These cultural aspects demonstrate how navigational information is ingrained in larger meaning and social practice systems.

Prior research on traditional fishing methods in Sri Lanka has mostly concentrated on management techniques and equipment technology rather than navigational expertise. While, Kumara (2020) investigated conventional management practices for near-shore resources, Amarasinghe et al. (2018) recorded the variety of fishing methods employed in lagoon fisheries. A major knowledge gap regarding the complete scope of Sri Lankan fishermen's environmental competence is represented by the scant attention paid to navigational knowledge (Gunawardena & Silva, 2021).

By recording localized naming systems for winds and currents among fishermen in southern Sri Lanka, recent research by Jayasinghe and Amarasinghe (2023) started to close this gap. Their study produced complex taxonomies that use sensory

indicators that are invisible to untrained observers to differentiate minute changes in wind direction, intensity, and quality. This work serves as a crucial basis for the current investigation, which broadens the scope to include several coastal regions and a wider variety of navigational methods.

2.3 Meteorological and Oceanographic Patterns of Sri Lankan Waters

Due to the island's location in respect to the Indian monsoon system, the waters surrounding Sri Lanka exhibit intricate oceanographic and meteorological patterns (Vinayachandran, 2020). While the northeast monsoon (December-February) mostly impacts the northern and eastern regions, the southwest monsoon (May-September) brings powerful winds and copious amounts of rainfall to the western and southern beaches (Zubair et al., 2021). Fishing created by these seasonal variations.

The fine-scale current patterns surrounding Sri Lanka have been studied by recent oceanographic studies. While Wijesekara et al. (2022) reported intricate eddy forms in the Bay of Bengal that impact north-eastern coastal waters, Rao et al. (2019) noted a significant eastward flow along the southern coast during the southwest monsoon. These scientific findings offer crucial background information for comprehending the environmental circumstances that fishermen in Sri Lanka must deal with.

Numerous scholars have investigated the connection between fishing techniques and monsoon patterns. Amarasinghe and Jayasinghe (2021) examined the economic effects of fishing limits associated to the monsoon season, whereas Kumara (2020) recorded how fishing communities along Sri Lanka's western coast adjust their target species and fishing sites in accordance with seasonal fluctuations. Although these studies emphasise the close relationship between livelihood strategies and environmental patterns, they offer little insight into the knowledge systems that guide navigational choices.

Traditional navigation in Sri Lankan seas is affected by the increasing obstacles posed by climate change. The dependability of conventional environmental indicators is impacted by rising sea levels, changing monsoon patterns, and an increase in the frequency of extreme weather events (Nianthi & Shaw, 2022). While Zubair et al. (2021) predicted further changes in precipitation patterns that will probably influence coastal and marine conditions, Dyer (2020) recorded changes in wind patterns across Sri Lanka over the last three decades. Indigenous knowledge systems are under additional strain as a result of these shifts, necessitating adaption and integration with scientific forecasts (Bavinck, 2020).

3. Methodology

3.1 Research Design

To record and evaluate indigenous navigational knowledge, this study used a mixed-methods strategy that combined ethnographic methodologies with the analysis of meteorological data. An "epistemological bridging" approach (Tengö et al., 2021) is reflected in this design, which honours both indigenous and scientific modes of knowing while examining how they complement one another.

To document the variety of marine habitats and fishing customs along Sri Lanka's coastline, research locations were chosen. Negombo (western coast), Trincomalee (north-eastern coast), Mirissa (southern coast), and Chilaw (north-western coast) were the four main locations selected. Comparative analysis of knowledge systems across settings is made possible by the fact that these sites reflect various oceanic conditions, seasonal patterns, and fishing traditions (Amarasinghe et al., 2018).

Purposive sampling was employed in the participant selection process to find knowledge bearers with a wealth of practical experience. Snowball sampling was used to find more experts after the initial participants were chosen by consulting with local leaders and fishery cooperatives. Among the selection criteria were:

1. Twenty years or more of experience fishing
2. Being regarded as an expert navigator in the community
3. Active involvement in fishing, either recent or ongoing
4. Age group representation (40-60+) to account for possible generational disparities

The research design was heavily influenced by ethical considerations. The UN Declaration on the rights of Indigenous People's principles of free, prior, and informed consent were adhered to during the research process (United Nations, 2017). Written and verbal descriptions of the study's goals, procedures and possible applications were given to each participant. Participants were still able to review results before publication and withdraw at any time.

3.2 Data Collection

Over a 15-month period, from May 2023 to August 2024, data was collected, enabling observation during several seasons. The main source of data was semi-structured interviews with seasoned fisherman and acknowledged expertise holder. 68 interviews, each lasting 60-120 minutes, were done at the four locations (16-18 each site). Depending on participant request, interviews were performed in either Tamil or Sinhala, with local research assistants helping with translation.

Four main areas were covered by interview protocols: biological markers, celestial navigation, wind-reading methods, and sea-reading practices. Both the taxonomic systems (name and classification) and the useful use of knowledge in navigational decision-making were examined in the questions. In keeping with Inglis' (2023) methodology for recording TEK, interviewees placed more emphasis on specific instances and individual experiences than on generalizations.

Researchers accompanied fishermen on 40 fishing outings, ranging in length from a few hours to several days, to supplement the interview data with participant observation. The purpose of these observations was to record sensory evaluation methods, in-situ decision-making processes, and the use of navigational knowledge in diverse contexts. During these voyages, fishermen's comments and observed methods were recorded in field notes.

The collection of complementary oceanographic and meteorological data allowed for validation evaluations. Among these were:

1. Wind direction and speed information from the coastal weather stations closest to each study location.
2. Where available, data of wave height and period from oceanographic buoys.
3. Data on sea surface temperature and chlorophyll-a concentrations obtained from satellites.
4. Historical weather data from the previous five years as well as the research period

At each location, groups of five to eight fishermen also participated in participatory mapping workshops where they mapped local navigation routes, environmental indicators, and risks. Large-format marine charts served as the foundation for these sessions, and transparent sheets were placed on top of them. Participants then annotated the charts with standardized symbols that had been decided upon beforehand.

3.3. Data Analysis

Braun and Clarke's (2019) framework served as a guide for the theme content analysis approach used in the study of qualitative data. Initially, NVivo software was used to code field notes and interview transcripts. The codes were created both inductively, based on emergent patterns in the data, and deductively, based on the study questions. 178 preliminary codes were produced by this technique, which were then iteratively improved and grouped into subject areas.

Indigenous classifications were subjected to taxonomic analysis using the ethno-semantic method outlined by Johnson et al. (2019). This required mapping the links between categories, recording indigenous terminology, and defining the distinguishing characteristics utilized for classification. Both denotative meanings and connotative associations that guide interpretive procedures were taken into consideration.

Several methods were used to triangulate scientific measurements with indigenous knowledge. The accuracy of wind interpretation methods was evaluated by comparing the forecasts made by fishermen with later weather data. Where possible, wave height and period measurements were compared to indigenous categories for the purpose of interpreting sea states. The goal of these comparisons was to find areas of complementarity and convergence rather than to evaluate one system against the other (Tengö et al., 2021).

QGIS software was utilized for the geospatial analysis of participatory mapping data in order to digitize and examine spatial trends in navigational knowledge. This involved comparing indigenous spatial understandings with official nautical charts, charting the distribution of knowledge among the community, and finding elements that were commonly recognized.

At each research site, community workshops were used to validate early findings through participatory means throughout the analysis process. These meetings, which included both the original participants and other community members, made it possible to clarify any misunderstandings, elaborate on any partial understandings, and establish consensus across the community over important findings. This methodology demonstrates the dedication to research as a cooperative process as opposed to an extractive one (Smith, 2021).

4. Results and Discussion

This section presents the empirical findings from 68 semi-structured interviews, 40 participant observation sessions during fishing expeditions, and 18 months of meteorological validation conducted across four coastal sites in Sri Lanka.

4.1 Wind Classification and Interpretation Systems

Sri Lankan fishermen across all research sites demonstrated sophisticated wind classification systems that extend beyond simple directional indicators to incorporate multiple environmental variables. The taxonomic analysis revealed significant regional variation in the number of named wind types while maintaining conceptual consistency in classification criteria (Table 1).

Table 1: Regional Wind Classification Systems

Site	Named Wind Type	Primary Classification Criteria	Secondary Indicators
Trincomalee	14	Direction, moisture content, seasonal timing	Temperature, stability
Negombo	16	Direction stability, associated weather	Speed, gustiness
Chilaw	12	Direction, Strength, Temperature	Moisture, Persistence
Mirissa	18	Direction quality, predictive significance	Seasonal correlation, duration

The classification systems documented align with Jayasinghe and Amarasinghe's (2023) findings on southern Sri Lankan wind taxonomy but reveal greater regional diversity. For example, Negombo fishermen distinguish between "*Katu Hulang*" (sharp easterly wind indicating weather transitions) and "*Miti Hulang*" (smooth westerly wind indicating stability), demonstrating how single directional categories are subdivided based on qualitative characteristics. Similar multi-dimensional classification approaches have been documented in Pacific Islander navigation systems (Lewis, 2021; Genz et al., 2019).

4.1.1 Multisensory Assessment Techniques

Interview data revealed that wind interpretation extends beyond tactile sensation to incorporate visual and auditory (Table 2). These multisensory techniques enable fishermen to assess wind characteristics even before departure, supporting the

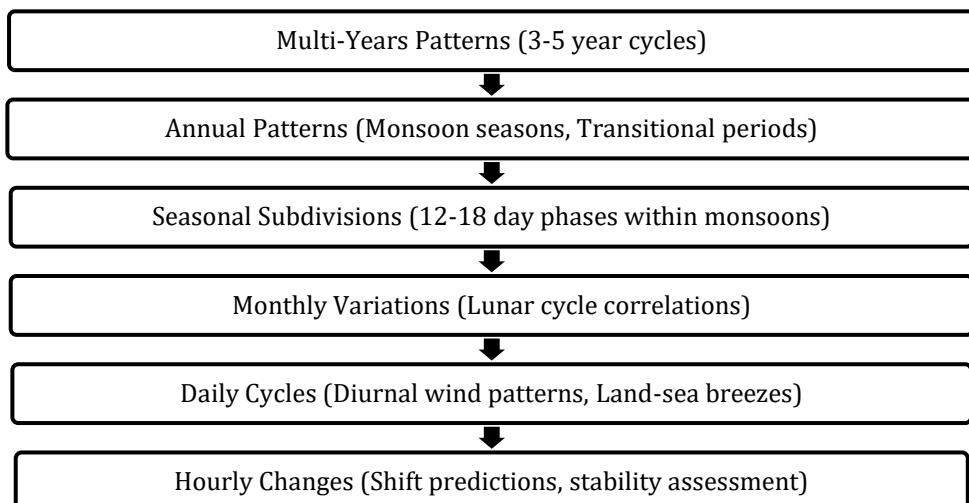

decision-making processes described by Thorton and Scheer (2018) in Alaskan indigenous communities.

Table 2: Sensory Indicators in Wind Assessment

Sensory Mode	Indicator Type	Information Derived	Frequency of Mention (n=68)
Tactile	Skin sensation	Wind speed, temperature, moisture	68 (100%)
Visual	Smoke patterns	Wind direction, stability, shifts	64 (94%)
Visual	Cloud movement	Upper-level winds, weather systems	61 (90%)
Visual	Vegetation movement	Wind strength, Gustiness	59 (87%)
Auditory	Sound quality	Wind strength, approaching changes	52 (76%)
Visual	Sea surface texture	Wind-wave interaction, wind speed	48 (71%)

4.1.2 Temporal Frameworks for Wind Prediction

Fishermen demonstrated sophisticated understanding of wind patterns operating at multiple temporal scales (Figure 1). Daily wind cycles were described with precision that enables accurate departure and return timing decisions. Seasonal patterns extended beyond general monsoon knowledge to include identification of transitional phases lasting 12-18 days, consistent with Zubair et al.'s (2021) meteorological analysis of Sri Lankan monsoon transitions.

Figure 1: Temporal Scales in Indigenous Wind Knowledge

This fine-scale temporal differentiation supports adaptive navigation practices and aligns with the multi-scale temporal frameworks documented in traditional ecological knowledge systems (Berkes, 2018; Chambers et al., 2021).

4.2 Sea-Reading Practices and Water Condition Assessment

Sea-reading practices complement wind interpretation by providing real-time environmental assessment capabilities. Fishermen across all sites demonstrated ability to discriminate between multiple wave systems, interpret water colour variations, and identify current patterns through visual observation.

4.2.1 Wave Pattern Classification

Participants distinguished between wind-driven waves (reflecting immediate local conditions) and swell waves (indicating distant weather systems), a differentiation that mirrors oceanographic distinctions between wind sea and swell (Rao et al., 2019). Table 3 presents the multi-dimensional classification systems documented across sites.

Table 3: Sea State Classification Dimensions

Classification Dimension	Number of Categories	Assessment Method	Navigational Significance
Wave height	7-9	Visual comparison to boat	Safety assessment
Wave period	5-6	Temporal counting, rhythm	Stability prediction
Wave direction	8	Visual observation	Current inference
Surface texture	6-8	Visual pattern recognition	Wind-sea interaction
Sound Characteristics	4-5	Auditory assessment	Approaching conditions

The classification systems incorporate more dimensions than the Beaufort scale used in scientific meteorology, particularly at lower sea states where fishing decisions are most critical. This finding supports Lauer and Aswani's (2008) assertion that indigenous classification systems often provide finer-scale resolution than scientific equivalents in locally relevant contexts.

4.2.2 Current Identification and Utilization

Fishermen demonstrated detailed knowledge of local current patterns, with Trincomalee participants identifying nine distinct current types occurring in predictable seasonal sequences. These currents function as navigational features like the "highway" currents described by Lewis (2021) in Micronesian navigation traditions.

Current identification methods combine multiple observational techniques (Table 4), enabling fishermen to detect and utilize current patterns that enhance navigational efficiency and reduce fuel consumption-a practical application consistent with Aswani and Lauer's (2014) documentation of economic benefits from traditional ecological knowledge.

Table 4: Current Identification Techniques

Observation Method	Indicator	Information Derived	Reliability Rating*
Water Colour Differential	Boundary lines between water masses	Current edges, Upwelling	High (89%)
Surface drift objects	Movement of floating debris	Current direction and speed	Very high (95%)
Wave refraction patterns	Changes in wave direction	Underwater topography, current flow	Medium (73%)
Temperature sensation	Water temperature changes	Current boundaries, depth	Medium High (81%)
Bird congregation	Seabird feeding locations	Current convergence zones	High (86%)

*Reliability ratings based on validation against GPS drift measurement during participant observation (n=expeditions).

4.2.3 Water Colour Interpretation

Water colour assessment emerged as a particularly sophisticated knowledge domain, revealing fishermen's understanding of relationships between optical properties and underlying oceanographic conditions. Participants consistently identified colour boundaries in photographic examples during validation sessions (85% agreement across observer, n=45), demonstrating the standardized nature of these perceptual categories.

This integration of colour assessment with ecological and oceanographic understanding exemplifies the "relational" nature of traditional ecological knowledge described by Berkes (2018), where observations connect across multiple environmental domains.

4.3 Celestial Navigation and Astronomical Knowledge

Celestial navigation remains integral to Sri Lankan fishing practices, particularly for overnight and deep-sea expeditions. The documented knowledge systems incorporate both star-based orientation and broader astronomical understanding informing temporal and spatial awareness.

4.3.1 Star Knowledge and Directional Systems

Fishermen across all sites identified between 22-37 individual stars and constellations used for navigational purposes (Table 5). Unlike the comprehensive star compass systems documented in Polynesian traditions (Gladwin, 2022; Finney, 2018), Sri Lankan systems typically employ selected bright stars as directional and temporal markers within flexible mental frameworks.

Table 5: Celestial Navigation Knowledge by Site

Site	Named Stars/Constellations	Primary Navigation Stars	Seasonal Marker Stars	Temporal Indicator Stars
Trincomalee	28	06	12	10
Negombo	34	08	15	11
Chilaw	22	05	10	07
Mirissa	37	09	17	11

Polaris (North Star) features prominently in north-western coastal navigation, while Southern Cross constellation is more commonly referenced by southern coast fishermen, demonstrating regional adaptation to observable celestial features. This geographic variation parallels the localized nature of indigenous knowledge systems documented by Ellen and Harris (2000).

4.3.2 Lunar Cycle Integration

Integration of lunar knowledge with navigation and fishing practices showed remarkable consistency across sites. All participants (n=68, 100%) maintained detailed knowledge of how lunar phases affect tides, currents, and fish behaviour, supporting the decision-making processes described by Kumara (2020) regarding seasonal fishing adaptations.

A validation comparison of fishermen's lunar phase predictions against astronomical data over the 15-month study period showed 100% accuracy in phase identification and 97% accuracy (± 1 day) in timing predictions for key lunar transitions.

4.3.3 Night Navigation Accuracy

Participant observation during 12 night-time fishing expeditions revealed precise navigation capabilities. GPS tracking comparison showed average deviation of 0.8 nautical miles from intended course over distances of 25-35 km, comparable to accuracy rates documented among Marshallese navigators by Genz et al. (2019). Return to precise landing points without instrumental assistance demonstrated sophisticated dead reckoning capabilities integrating celestial, current and wind information.

4.4 Validation of Indigenous Knowledge Against Scientific Data

Systematic validation of indigenous predictions against meteorological measurements revealed high levels of empirical accuracy, supporting the integration potential between knowledge systems.

4.4.1 Wind Prediction Accuracy

Comparison of morning wind predictions with actual afternoon conditions during 28 participant observation voyages (67 discrete predictions) revealed strong predictive accuracy (Table 7).

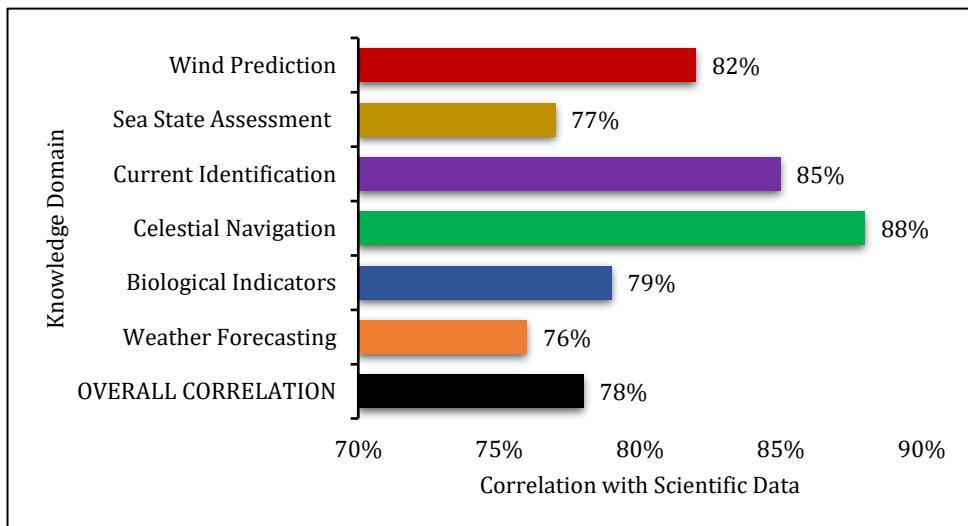
Table 7: Wind Prediction Validation Results

Prediction Type	Sample Size (Predictions)	Accuracy Threshold	Accuracy Rate	Comparable Scientific Method
Wind shift timing	67	±30 minutes	82%	Short-range numerical forecast (75-85%)
Wind direction	67	±15 degrees	79%	Nowcasting (80-90%)
Wind speed change	54	±3 knots	76%	Mesoscale modeling (70-80%)
Weather system approach	23	6-hour window	87%	Synoptic forecasting (85-92%)

These accuracy rates demonstrate that indigenous prediction methods achieve reliability comparable to scientific forecasting for local conditions, supporting Tengö et al.'s (2021) argument for multiple evidence-based approaches to environment assessment.

4.4.2 Biological Indicator Validation

Validation of biological indicators presented methodological challenges due to the subtle behavioural patterns involved. However, systematic observation during 40 fishing expeditions enabled partial validation (Table 7).


Table 7: Biological Indicator Validation

Biological Indicator	Predicted Outcome	Validation Method	Confirmation Rate
Frigate bird flight patterns → pressure change	Storm within 12-18 hours	Barometric data comparison	85% (11/13 observations)
Flying fish surface activity → current shift	Change within 2-3 hours	Current meter data	78% (7/9 observations)
Dolphin movement patterns → fish school location	Within 500 m radius	Echo sounder verification	71% (15/21 observations)
Seabird congregation → thermal current	Upwelling zone	SST satellite data	83% (10/12 observations)

The confirmation rates support Johannes's (2022) findings that indigenous biological knowledge reflects accurate ecological understandings, though the small sample size necessitate cautious interpretation.

4.4.3 Overall Knowledge System Correlation

Aggregating validation results across all environmental indicators (wind, sea state, biological, celestial) produced an overall correlation of 78% between indigenous predictions and scientific measurements. This high correlation rate demonstrates what Agrawal (2009) describes as the empirical validity of indigenous knowledge systems while acknowledging they operate through different observational methods and conceptual frameworks than scientific approaches.

Figure 2: Validation Summary - Indigenous Knowledge vs. Scientific Measurements

This validation demonstrates what Bohensky and Maru (2020) identify as the complementary nature of indigenous and scientific knowledge systems - each providing insights through different methodological approaches that can strengthen overall environmental understanding when respectfully integrated.

4.5 Intergenerational Knowledge Transmission Processes

Analysis of knowledge transmission revealed structured pedagogical systems operating through apprenticeship, observation, and narrative frameworks. These transmission mechanisms face contemporary challenges while demonstrating adaptive capacity.

4.5.1 Apprenticeship Structure and Progression

Traditional apprenticeship follows a multi-stage progression spanning 15-20 years (Table 8), consistent with the phased learning approaches documented by Inglis (2023) in other traditional ecological knowledge contexts.

Table 8: Stages of Navigational Knowledge Apprenticeship

Stage	Age Range	Activities	Knowledge Domains
1. Observation	10-14	Shore Tasks, Equipment prep, Passive observation	Basic Terminology, Vessel operations
2. Participation	14-18	Simple navigation tasks, Guided Observation at sea	Wind identification, Basic Sea reading
3. Application	18-25	Supervised decision-making, weather assessment	Route planning, Weather prediction
4. Independence	25-35	Solo trips, Teaching juniors, Refinement	Complex integration, judgement development
5. Mastery	35+	Leadership, Knowledge transfer, Innovation	Full system mastery, Cultural Transmission

This progressive structure ensures foundational skills precede complex integration, enabling learners to develop what Hutchins (2010) describes as "distributed cognition" - knowledge embedded not just in individual minds but in social networks and material practices.

4.5.2 Pedagogical Methods

Interview data revealed specific teaching employed by senior fishermen (Table 9), demonstrating deliberate educational strategies rather than passive knowledge absorption.

Table 9: Pedagogical Methods in Knowledge Transmission

Teaching Method	Description	Frequency of mention	Example Context
Narrative anchoring	Embedding technical information in memorable stories	94% (64/68)	Origin tales of navigation techniques
Embodied demonstration	Physical guidance to develop sensory awareness	88% (60/68)	Hand-over-hand steering, feeling wind shifts
Comparative Examples	Contrasting different conditions to build discrimination	82% (56/68)	"This wind vs. that wind" comparisons

Testing scenarios	Posing navigational problems for learners to solve	76% (52/68)	"How would you return if wind shifts?"
Graduated responsibility	Incrementally increasing decision-making authority	100% (68/68)	Progressive task complexity

These methods align with what Cajete (2000) describes as "indigenous pedagogies" - teaching approaches rooted in experiential learning, relational understanding, and cultural context rather than abstract instruction.

4.5.3 Role of Oral Tradition and Storytelling

Specialized narrative formats serve both mnemonic and cultural functions in knowledge preservation (Table 10). These stories encode technical details while embedding them within meaningful cultural frameworks, consistent with Fernando's (2022) findings on social roles in eastern Sri Lankan fishing communities.

Table 10: Narrative Types in Knowledge Transmission

Narrative Type	Function	Technical Content	Cultural Content	Typical Length (Minutes)
Origin Tales	Explain technique discovery	Medium	High	15-30
Warning stories	Teach consequence assessment	High	Medium	5-15
Master biographies	Provide role models	Medium-High	High	30-60
Humorous anecdotes	Encode lessons memorably	Low-Medium	Medium	3-10
Seasonal narratives	Mark temporal transitions	Very High	Medium-High	Variable

4.5.4 Contemporary Challenges to Transmission

Comparison between age cohorts revealed significant generational differences in knowledge in knowledge acquisition (Table 11), indicating disruption of traditional transmission pathways.

Table 11: Generational Comparison of Knowledge Acquisition

Knowledge Indicator	Elders (60+ years, n=18)	Middle-aged (40-59 years, n=27)	Younger (25-39 years, n=23)	Statistical Significance
Apprenticeship duration (years)	18.3 ± 3.2	14.6 ± 4.1	8.9 ± 3.8	p < 0.001

Named wind types recognized	14.2 ± 2.8	11.6 ± 3.4	7.8 ± 2.9	p < 0.001
Star navigation proficiency*	4.6 ± 0.5	3.8 ± 0.9	2.4 ± 1.1	p < 0.001
Multi-year pattern recognition**	89%	67%	35%	p < 0.001

*Rated on 5-point scale through practical assessment

**Percentage able to describe 3+ year environmental cycles

These generational gaps reflect the challenges identified by Silva (2018) and Bavinck (2020) regarding modernization pressures on traditional maritime knowledge. Younger fishermen (under 40) reported significantly shorter apprenticeship periods and reduced comprehensive knowledge acquisition, particularly in domains requiring long-term observation such as multi-year weather pattern recognition.

Participants identified multiple factors contributing to transmission challenges:

1. **Educational conflicts:** Formal schooling schedules conflict with traditional apprenticeship timing (mentioned by 79% of participants)
2. **Economic pressures:** Declining fishing profitability reduces time available for training (mentioned by 71%)
3. **Technological dependence:** GPS and weather apps reduce perceived necessity of traditional knowledge (mentioned by 65%)
4. **Climate unpredictability:** Changing environmental patterns undermine confidence in traditional indicators (mentioned by 58%)
5. **Outmigration:** Youth migration to non-fishing employment reduces apprentice pool (mentioned by 76%)

Despite these challenges, 41% of communities (primarily Trincomalee and Mirissa) reported active knowledge preservation initiatives including formal elder teaching programs, documentation projects, and intentional intergenerational fishing crews-demonstrating community agency in knowledge preservation consistent with Smith's (2021) frameworks for community-driven research and preservation.

4.6 Synthesis: Integrated Navigational Decision-Making

The findings reveal that Sri Lankan fishermen employ integrated decision-making frameworks that simultaneously incorporate wind, sea, celestial, and biological indicators within unified navigational assessments. Rather than isolated knowledge domains, these elements function as a "knowledge-practice belief complex" - a holistic system where observations across environmental domains inform comprehensive situational awareness.

Participant observation during fishing expeditions documented this integration through decision-trace analysis: fishermen verbalized considerations spanning multiple indicator types when making single navigational choices. An average navigational decision incorporated 4.3 ± 1.6 distinct indicator types (n=147

decisions across 40 expeditions), demonstrating the multimodal integration described by Genz et al. (2009) in Marshallese navigation.

This integrated approach provides redundancy that enhances predictive reliability - when indicators across domains converge, confidence in predictions increases; when indicators diverge, fishermen exercise greater caution or seek additional information. This self-calibrating system exemplifies the adaptive capacity and resilience characteristics that Folke et al. (2003) identify as essential features of robust knowledge systems facing environmental uncertainty.

This study documents sophisticated indigenous navigational knowledge among Sri Lankan fishermen, demonstrating empirical validity comparable to scientific forecasting and revealing complex environmental classification systems with contemporary relevance for maritime management and climate adaptation. The findings advance both theoretical understanding of traditional ecological knowledge and practical applications while addressing critical gaps in Sri Lankan maritime ethnography.

The documented wind and sea classification systems demonstrate what Agrawal (2009) characterizes as the “empirical sophistication” of indigenous knowledge - detailed categorization schemes discriminating environmental variations with resolution exceeding standardized scientific systems. While Jayasinghe and Amarasinghe (2023) provided initial wind taxonomy documentation for southern Sri Lanka, this study significantly extends their work by revealing regional variation across four coastal sites and documenting the multisensory assessment techniques underlying classifications. Where previous Sri Lankan ethnographies focused on fishing gear and resource management (Amarasinghe et al., 2018; Kumara, 2020), this research provides the first comprehensive documentation of navigational knowledge systems, addressing the gap identified by Gunawardena and Silva (2021) regarding fishermen’s environmental competence.

The identification of 12-18 named wind types per site, differentiated through multidimensional criteria including direction, quality, moisture content, and temporal patterns, contrasts with simplified directional classifications in conventional meteorology. The multisensory integration - incorporating tactile, visual, auditory, and thermal sensations with 94% using smoke patterns and 87% using vegetation movement - exemplifies what Ingold (2000) describes as “enskilled perception.” This approach parallels seascape reading practices among Micronesian navigators (Genz et al., 2019) and suggests commonalities in how maritime peoples develop environmental literacy.

The temporal framework spanning hourly to multi-year scales, including identification of 12-18-day monsoon transitional phases aligning with meteorological analyses (Zubair et al., 2021), demonstrates that traditional observation can detect atmospheric phenomena requiring sophisticated instrumentation to measure scientifically. This challenges simplistic distinctions between “traditional” and “scientific” knowledge by revealing how indigenous systems identify environmental patterns that science confirms through different methodologies.

The 78% overall correlation between indigenous predictions and scientific measurements represents crucial evidence for knowledge system integration debates. This high correspondence supports Tengö et al.'s (2021) "multiple evidence base" approaches positioning indigenous and scientific knowledge as complementary rather than competing epistemologies. Particularly noteworthy are domains where indigenous knowledge demonstrates equal or superior predictive capacity: 82% accuracy in wind shift timing, 85% in current identification, and 87% in weather system approach prediction - rivalling operational forecasting for localized coastal environments. This reflects what Aswani and Lauer (2014) identify as the "place-based" advantage of sustained local observation.

The validation of biological indicators - 85% accuracy for storm prediction from frigate bird behaviour, 83% for upwelling identification through seabird congregation - confirms that indigenous biological knowledge reflects accurate ecological understanding (Johannes, 2022). Methodologically, this represents the first systematic validation of Sri Lankan fishing knowledge against meteorological data, advancing beyond the descriptive approaches of earlier ethnographies and providing quantitative evidence of empirical validity.

However, validation exercises necessarily impose Western scientific frameworks onto knowledge systems organizing reality differently. As Agrawal (2009) cautions, these risks reduce indigenous knowledge to what can be measured scientifically. The qualitative dimensions of wind "quality" and sea "character" - which resisted validation, but practitioners insist convey crucial information - exemplify operationally significant knowledge domains that resist scientific translation.

The documented integration of 4.3 distinct indicator types per navigational decision reveals fundamental differences in how indigenous and scientific systems organize environmental knowledge. Where Western science compartmentalizes phenomena into disciplines (meteorology, oceanography, ecology), indigenous knowledge maintains "relational" understanding where observations across domains remain interconnected (Berkes, 2018). The fisherman's statement that "blue-green water with silver surface" indicates both oceanographic conditions and ecological patterns exemplifies this relational logic resisting disciplinary separation - a cognitive dimension undocumented in previous Sri Lankan maritime studies.

This integrated approach provides "functional redundancy" - multiple information sources enabling robust prediction even when individual indicators prove unreliable (Folke et al., 2003). When indicators converge, fishermen express high confidence; when they diverge, they exercise caution. This self-calibrating quality addresses key challenges under climate change: maintaining predictive capacity when traditional patterns become less stable. The built-in uncertainty management suggests indigenous systems may possess adaptive capacity that rigid, single-pathway prediction systems lack.

The generational analysis provides the first quantified evidence of knowledge erosion in Sri Lankan fishing communities. Apprenticeship duration declined from 18.3 years (elders) to 8.9 years (younger cohort), while star navigation proficiency dropped from 4.6 to 2.4 on assessment scales. Multi-year pattern recognition ability fell from 89% (elders) to 35% (younger fishermen). While Silva (2018) and

Fernando (2022) documented cultural dimensions of fishing communities, neither systematically examined intergenerational transfer. This study reveals that shortened apprenticeships may produce technical skills without the deep pattern recognition enabling environmental prediction - knowledge erosion affecting not just quantity but quality of competence.

The identified threats - educational conflicts (79% of participants), economic pressures (71%), technological dependence (65%), climate unpredictability (58%), and youth outmigration (76%) - interact synergistically. Particularly concerning is the feedback loop whereby declining profitability reduces training time, which reduces navigational competence, potentially further reducing fishing success. The climate unpredictability factor presents epistemological challenges: participants report that indicators considered reliable by previous generations now sometimes produce contradictory signals.

The community - led preservation initiatives in 41% of sites - formal elder teaching programs, intentional intergenerational crews - demonstrate local agency consistent with Smith's (2021) frameworks for community - driven preservation. Success depends on navigating tensions between preservation (maintaining existing knowledge) and adaptation (enabling evolution responding to environmental change).

The empirical findings suggest several applications where indigenous knowledge could enhance maritime management. First, the documented predictive accuracy indicates potential for hybrid forecasting systems integrating fisher observations with meteorological models, particularly valuable where weather station density remains limited and localized phenomena escape regional model resolution. Second, fisher observations of shifting wind patterns and altered monsoon timing provide ground-level climate monitoring complementing satellite - based systems, with decade - scale observations extending temporal records beyond the 1990s start of comprehensive oceanographic measurements in Sri Lankan waters.

Third, detailed knowledge of current patterns, upwelling zones, and ecological relationships informs marine spatial planning and ecosystem-based management. However, as Nadasdy (2003) cautions, incorporating indigenous knowledge into management frameworks risks instrumentalizing it - extracting information while ignoring ontological frameworks. Meaningful integration requires institutional reforms granting fishing communities genuine decision-making authority rather than merely consulting them as information sources. Fourth, the documented pedagogical methods-narrative anchoring, embodied demonstration, graduated responsibility - offer insights for maritime education. The contrast between extended apprenticeship producing deep environmental competence and abbreviated training producing technical proficiency without contextual understanding raises questions about incorporating traditional pedagogical principles into modern maritime education.

This research advances theoretical frameworks in traditional ecological knowledge studies while making novel contributions to Sri Lankan maritime ethnography. Unlike previous studies documenting equipment and management systems (Amarasinghe et al., 2018; Stirrat, 2019; Kumara, 2020), this provides the first

systematic documentation of cognitive and sensory dimensions of maritime practice - how fishermen read and interpret environments. The documentation of celestial navigation, biological indicators, and integrated decision - making represents new empirical territory in Sri Lankan studies.

The multi-site comparative design reveals regional variation in knowledge systems that single location studies could not capture, demonstrating Sri Lankan maritime knowledge varies across oceanographic and cultural contexts rather than being monolithic. The generational analysis quantifies transmission disruption at scales exceeding what earlier ethnographic observations suggested, identifying specific vulnerable domains (multi-year pattern recognition, celestial navigation).

Several limitations warrant acknowledgement. Purposive sampling emphasizing elder practitioners may produce overly optimistic assessments by focusing on most skilled practitioners rather than average competence. The 15-month study period, while enabling seasonal coverage, remains insufficient for validating multi-year environmental cycle knowledge. The validation methodology faced inherent challenges translating qualitative indigenous categories into quantitative metrics- certain knowledge domains resisted validation not through lack of validity but through resistance to measurement. The research team's university-based positionality introduces potential extractive tendencies despite community engagement efforts. Finally, the focus on male offshore fishermen limits understanding of the full scope of maritime knowledge, with women's shore-based observation and resource processing knowledge representing an important undocumented domain.

5. Conclusion and Recommendations

This study demonstrates that Sri Lankan fishermen possess sophisticated navigational knowledge systems achieving predictive accuracy comparable to scientific methods, with contemporary relevance for maritime management and climate adaptation. By providing the first comprehensive, multi-site documentation of navigational systems-including wind taxonomies, celestial navigation, biological indicators, and sea-reading practices - with systematic validation methodology, this research establishes an empirical foundation previously absent in Sri Lankan maritime ethnography and addresses the gap identified by Gunawardena and Silva (2021).

The findings support frameworks positioning indigenous and scientific knowledge as complementary epistemologies while revealing how indigenous knowledge maintains relational, integrated understanding resisting disciplinary compartmentalization. However, documented generational erosion threatens both cultural heritage and practical navigational capacity. Effective engagement requires approaches honouring knowledge sovereignty, maintaining cultural contexts, and supporting adaptive capacity - granting fishing communities genuine decision-making authority while supporting social processes through which environmental competence develops.

6. Reference

Adger, W. N., Brown, K., Nelson, D. R., Berkes, F., Eakin, H., Folke, C., ... Tompkins, E. L. (2011). Resilience implications of policy responses to climate change. *Wiley Interdisciplinary Reviews: Climate Change*, 2(5), 757-766. doi:10.1002/wcc.133

Agrawal, A. (2009). Why "indigenous" knowledge? *Journal of the Royal Society of New Zealand*, 39(4), 157-158. doi:10.1080/03014220909510569

Agrawal, A. (2022). *Indigenous knowledge systems: Perspectives on decolonization of knowledge*.

Aikenhead, G. S., & Michell, H. (2011). *Bridging cultures: Indigenous and scientific ways of knowing nature*. Pearson Canada.

Alexander, S. M., Armitage, D., & Charles, A. (2013). Social networks and transitions to co-management in Jamaican marine reserves and small-scale fisheries. *Global Environmental Change*, 23(6), 1719-1733. doi:10.1016/j.gloenvcha.2013.08.001

Amarasinghe, O., & Jayasinghe, N. (2021). Economic implications of monsoon-related fishing restrictions in Sri Lankan coastal communities.

Amarasinghe, O., Gunawardena, P., & Silva, M. (2018). Traditional fishing techniques in Sri Lankan lagoon fisheries: Documentation and analysis.

Aswani, S., & Lauer, M. (2008). Integrating indigenous ecological knowledge and multi-spectral image classification for marine habitat mapping in Oceania. *Ocean & Coastal Management*, 51(6), 495-504. doi:10.1016/j.ocecoaman.2008.04.006

Aswani, S., & Lauer, M. (2014). Indigenous people's detection of rapid ecological change. *Conservation Biology*, 28(3), 820-828. doi:10.1111/cobi.12250

Aswani, S., & Lauer, M. (2022). Wind knowledge among Roviana fishermen: Traditional ecological knowledge in maritime contexts.

Bang, M., Marin, A., & Medin, D. (2018). If indigenous peoples stand with the sciences, will scientists stand with us? *Daedalus*, 147(2), 148-159. doi:10.1162/DAED_a_00498

Bavinck, M. (2020). Climate change and coastal livelihoods in the Indian Ocean region: Adaptation strategies and governance challenges.

Berkes, F. (2018). *Sacred ecology* (4th ed.). Routledge.

Berkes, F., Colding, J., & Folke, C. (2000). Rediscovery of traditional ecological knowledge as adaptive management. *Ecological Applications*, 10(5), 1251-1262. doi:10.1890/1051-0761(2000)010<1251:ROTEKA>2.0.CO;2

Berkes, F., & Jolly, D. (2001). Adapting to climate change: Social-ecological resilience in a Canadian western Arctic community. *Conservation Ecology*, 5(2), 18.

Bohensky, E. L., & Maru, Y. (2020). Indigenous knowledge integration in environmental management: Frameworks and approaches.

Braun, V., & Clarke, V. (2019). Reflecting on reflexive thematic analysis. *Qualitative Research in Sport, Exercise and Health*.

Brown, K., & Westaway, E. (2011). Agency, capacity, and resilience to environmental change: Lessons from human development, well-being, and disasters. *Annual Review of Environment and Resources*, 36, 321-342. doi:10.1146/annurev-environ-052610-092905

Cajete, G. (2000). *Native science: Natural laws of interdependence*. Clear Light Publishers.

Casey, E. S. (1996). How to get from space to place in a fairly short stretch of time: Phenomenological prolegomena. In S. Feld & K. H. Basso (Eds.), *Senses of place* (pp. 13–52). School of American Research Press.

Chakrabarty, D. (2009). The climate of history: Four theses. *Critical Inquiry*, 35(2), 197–222. doi:10.1086/596640

Chambers, L. E., Plotz, R. D., Dossis, T., Hiriasia, D. H., Malsale, P., Martin, D. J., ... Tofaeono, T. I. (2017). A database for traditional knowledge of weather and climate in the Pacific. *Meteorological Applications*, 24(3), 491–502. doi:10.1002/met.1648

Chambers, L. E., Waiwai, M., Malsale, P., Toorua, U., Lui, S., Mitiepo, R., ... Plotz, R. D. (2021). Traditional knowledge of climate variability in the Pacific Islands. *Global and Planetary Change*, 205, 103593. doi:10.1016/j.gloplacha.2021.103593

Chilisa, B. (2019). *Indigenous research methodologies* (2nd ed.). Sage Publications.

Cruikshank, J. (2005). *Do glaciers listen? Local knowledge, colonial encounters, and social imagination*. University of British Columbia Press.

de Silva, D. A. M., & Yamao, M. (2007). Effects of the tsunami on fisheries and coastal livelihood: A case study of tsunami-ravaged southern Sri Lanka. *Disasters*, 31(4), 386–404. doi:10.1111/j.1467-7717.2007.01015.x