Vidyodaya J. Soc., Sci Vol. 1 No. 2 —January 1987 pp. 1—17

THE SMALL SAMPLE BEHAVIOUR OF SOME NON-NESTED TESTS

By
W. A. JAYATISSA

Department of Economics, University of Sri Jayawardenapura, Sri Lanka

1. Introduction

Empirical researchers are often confronted with the problem of making
choise among alternative econometric models, of the process they are
investigating. What variables should be included in a regression model?
What functional form should the regression equation take? Is a log-linear
functional form more appropriate than a linear regression model? Are the
errors normally distributed or best characterised by some other distribution?
Some of the issues, the econometrician has to answer, would normally be taken
for granted, not because they are optimal from the point of view of economic
theory but because they are extremely convenient for estimation and hypotheses
testing purposes; however, problems of comparing alternative or rival
theories also arise.

There are situations when comparisons among regression models with
different variables and functional form are of interest. These comparisons
arise in economics when competing economic theories give rise to different
sets of relevant variables and the probability distributions (possibly in the form
of conditional linear regression models), chosen to characterise these economic
relatonships are likewise distinct. In these situations the data must be used
to discriminate among competing hypotheses. Examples are the comparison
of simple Quantity Theory models with simple Keynesian Theory models by
Friedman and Meiselman (1963) and the comparison of alternative invest-
ment theories by Jorgenson and Siebert (1968).

In many economic applications the models that we eventually encounter
are often non-nested in the sense that they have separate parametric families
and one model cannot be obtained from the others as a limiting process.
Most techniques for hypotheses testing in econometrics however, simply
allow one to test restrictions on a model more general-than one being valid;
for such cases the usual likelihood ratio criterion or other appropriate test
procedures can be utilised. Unfortunately, in the situation of non-nested
hypotheses the application of such procedures cannot be directly employed
and other suitable methods of testing have to be sought.
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2 The small sample behaviour of some non-nested tests

In this respect the procedure suggested by Cox (1961) and Atkinson (1970)
using the modified likelihood ratio is illuminating. In subsequent work

Pesaran (1974) and Pesaran and Deaton (1978) developed tests using the

results established by Cox to descriminate between linear as well as non-linear
non-nested regression models.

Davidson and MackKinnon (1981) suggested a simple testing procedure to

noa-nested hypotheses by employing a different approach called the principle
of artificial nesting. It 1s also worthy to mention the work of Fisher and

McAleer (198]1) and Godfrey (1983) on extnsions of the procedure suggested
by Davidson and MackKinnon.

The aim of this paper is (a) to outline some testing procedures upon which
tests of non-nested hypotheses may be based as well as their associated tests
of significance, (b) to introduce some extensions to those tests and to explain
the relationships among them and finally (¢) to examine the small sample
behaviour of these tests using Monte Carlo experiments.

2. Non-nested regression models

Consider the following two linear regressioﬁ models:
"H,: Y=Xb,+u, u,~ N(, o5 I) (D
H,: Y=2b,4+u, u ~N(O,oc2I) 2

where Y is the nxl vector of observations on the dependent variable, X and
Z are nxk, and nxk, observation matrices for the regressors of H, and H,,

b, and b, are the k,xl and k,xlI parmeter vectors, and u, and u; are nxl
disturbance vectors.

A
The ordinary least squares estimators of b, and b, will be deonoted by b,

and %i, and it will also be useful to introduce the OLS projection matrices.
My=1—P, and M, =1-—P,
where
P, = X(X'X)"'X’' and P, = Z(Z’Z)"Z’.

For purposes of discussing the tests, it is customary to assume that the
elements of X and Z are uniformly bounded with
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being finite non-singular matrices. These assumptions together with normality

of the disturbances form the basis of the classical theory of a single equation,

but need to be supplemented for the purposes of developing tests of (1) and (2)

regarded as non-nested models. The conventional approach is to specify
that the matrices. '

. X'Z
Em = lim [-———-n ] ,
. X'M. X - _

: Z’'M 7
El = lim [ nO ]= Ell _—'210 26{1’ 2011

exist as finite and non-null matrices.

2o o= 3

1o T~ ot

3. Tests based on the centered likelihood ratio

Denoting e; = (by, 03) and e, = (by, oD, the maximised log-likelihood
function under H, is given by

A

li — '—;log 27? — -;-log 0'21. ""-;' (i = 0! 1)

where ¢ = n'Y' (I-P) Y is the maximum likelihood estimate of o (i=0,1).

Under H,, p, = (X’X) "'X'Y is the maximum likelihood estimate of b,

A
while b, = (Z'Z)~'Z'Y is the maximum likelihood estimate of b, under H..

A A
If H, were to be nested within H;, the asymptotic expectation of I, -1,

A
evaluated at the (restricted) maximum likelihood estimate 0,=6, would be
zero. Since the two models are non-nested Cox suggested that, to test H,.

the mean of 1, - I, evaluated under H, (i.e. 60=§0) should be subtracted

A

A
froml, - 1,. Thus, the Cox test of H, against the alternative H, is
based upon the statistic.

Ty =(y-1p - nlplimyn "'(,-1)1 6,=6, (3

where plim, denotes the probability limit under H,. Cox shows that under
general conditions, given that H is the true model, T, will be asymptotically
normally distributed with mean zero and variance V,. If a consistent estimate

of V, is given by v, the statistic N, = T,/(v,)? will then be approximately
distributed as a standard normal variate under Ho..
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The numerator and the denominator of the Cox test for non-nested linear
regression models are explicitly given by Pesaran (1974) as |

Ty = 3 log (07/0ip) ' , - @

and

Vo = (05/0%9 by'X' M\MM,Xb, = (c2/5%) [Y'P,P, (I-P) P,P,Y] (5

in which

A

A A A A
0% = o2 4+ n’! by X'M, Xb, = 0§ + n™! Y'P, (I-P) P,Y (6)

Unfortunately, the logarithmic form of expression (4) rstricts further
simplication of this statistic. However, by examining the upper-bound
linearisation of T, similar to those discussed by Cox (1961) and Fisher and
McAleer (1981) it would be possible to simplify (4) as

TLo = ; (O'% - 0'%0)/0'%0 = ;[H-I Yl([“P1) Y - 0'120]/0'120 | (7

Since T, and TL, are asymptotically equivalent under H,, they have the
same asymptotic variance.

An unbiased estimate of P, Y=Zb, under H, is P,P,Y = Zb,,, where b,

A
Is a consistent estimate under H, of plim, b,. The Atkinson version of the
Cox test is then based upon the statistic

wllf

TAy = (I, - 1;p) ~ n[plimy n™! (1,-1 )1 0,= 6, (8)

in which

A

A | A
lig = -3 log2m -2 log o7 - 2 (n”'Y/(I-P,P)(I-P,P) Y]/0?%,
Hence
TA, =2 [07'Y! (I-P,P)! (I-P,P,)Y - 03,]/0%, 9

In (8) the entire statistic is evaluated under the null hypothesis. Since the
second terms on the right-hand sides of (3) and (8) are asymptotically equivalent

under H,, and because plim, ¢ =plim ¢},=plim, n'Y'(I-P,P)! (I-P,P) Y=072,
it follows that T, and TA, are asymptotically equivalent under H,.

Since TA, and T, are asymptotically equivalent under H,. a consistent
estimate of the asymptotic variance of TA, is given in (5).  Thus the statistic

NA, =TA,/(V)* is also approximately distr.ibuted as a standard normal
variate 1n large samples.
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4, Tests based on artificial regressions

Davidson and Mackinnon (1981) proposed a procedure for testing H,
by constructing an artificial regression from the models (1) and (2)

Y = Xb, + aZb, + U (10)

and testing whether =0 by using a conventional asymptotict test or, equival-
ently, the likelihood ratio test. | |

Since « in (10) 1s not identifiable they suggested first replacing b, in (10)
by b,, its least square estimate under H; leading to

Y =Xb, + aZb, + U
or |
Y = Xb, +aP,Y + U o (11

where P, is the orthogonal projection on the span of Z, and then testing «=0,
provide a vlid test for H,. Thisis called the J test. |

The process of replacing b, in (10) by b, 1s arbitrary, since b, may be
replaced by any estimate thatis asymptotically uncorrelated with the disturban-
ces under H,. Fisher and McAleer (1981) drawing upon Atkinson’s (1970)
suggsetion that quantities be evaluated under the null, proposed an alternative

A
to the J procedure replacing b, with b,,, aconsistent estimate of the asymptotic
expectation of b, under H,. They also argued that this will improve the
properties of the test not only does it entail re-evaluating the entire statistic
under H, but because it leans in the direction of H, if the model under H, is
performing better than expected.

A
In practice they replace b, with an estimat eof the expected value of b,
under H,, namely P.P,Y wheie P,is the orthogonal projection on the span
of X. The equation (11) then becomes. '

Y = Xb, + o P,P,Y + U - (12)

It is straightforward to show that under H,, the t ratio for & from (12)

is asymptotically equivalent to the J statistic from (11). This test 1s called the
JA test.

Unlike the J test which enjoys only large sample validity, the JA test
is exact when the regressors X and Z are fixed in repeated sampling with JA
being distributed as t with (n—k,—1) degrees of freedom. This is because
the additional regressor for the JA test namely P,P,Y, is obtained by regres:ing
P,Y on the columnsof Z, whence PP)Y isa function of. P)Y and is
independent of e,; i.e. the residuals from the hull model. *
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As we pointed out earlier, since the process of replacing b, in (10) using
b, or by, is purely arbitrary we can use any estimate for b, without violating
the asymptotic properties of the test. Immediately one thinks of a weighted
average of the above two estimates for b, namely,

(Ab, + Ab /(A 4 Ay, where A, and A, are appropriate weights for b,

and b,,. This will lead to the artificial regression

Y = Xb, + «'Z(A,b, + A, + U
Of
Y =Xb, + o'(A,P, 4+ A,P,P)Y + U (13)

and a test of &' = 0 can be used as a valid test for the null hypothesis as in
the case of the J and the JA tests. This test we call the JJA test.

Since we are incorporating more information regarding H, and H, through
the wighted average of the two estimates we may expect more power relative
to the case of a single estimate., On the other hand better small sample
performance can be expected as the second estimate leans the test statistic
in the direction of H,. However, these points should be regarded as indicative
rather than definitive.

5. Relationship between tests based on centered likelihood ratios and artificial
regressions

The important point to note in the discussion in Section 3 is that while
both T, and TA, modify a log-likelihood ratio by subtracting its asymptotic
expectation under the null model, the log-likelihood ratios differ in that only
the Cox statistic uses the maximised log-likelihood of the specific alternative.

A

A Ag
Another possibility in place of 1, or I, is to use 1, the calculated value

A
of the log-likelihood function under H,, evaluated at 6;= (b,, 6}y, where

A
by is an alternative estimate of b,. which gives

To = (I, - 1) = n[plimyn™ (1, - 1)1 (6, - 6,) (14)

Following Pesaran (1982b) and McAleer (1987) and restricting ourselves
to a class of estimators of b, which are linear in Y, we substitute RY for

A
b, in the artificial regression.

Y = Xb, + aZb; + U (15)

which is the regression that Davidson and MacKinnon (1981) and Fisher and
McAleer (1981) used in their precedures for testing non-nested models. The
k, x n matrix R is also assumed, for our purposes, to be non-stochastic, or
at least uncorrelated with the error in large samples.
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It 1s straightforward to relate tests based upon different modified

likelihood ratios through I; and the test of Hy: ¢ =0 in the artificial
regression (15). If the tests are related to the Cox test through the artificial
regression of the form given in (15), we can restrict the possibilities for R
to a specific set of matrices. The likelithood function for H, evaluated at

A

A A
(b, o3y = (YR}, g}y is

A A A
Ii = -2log 2w - Zlogoi, - 21n"'Y'(I-ZR) !(I-ZR) Y1/o%,

so that T, may be written as
T, =2ty (I-ZR)! (I-ZR)Y - 0,1/, (16)
In large samples the mean of T, should be equal to zero since
Y’ (I-ZR)’ (I-ZR) - no?%, = Y’ [-ZR-R'Z'+R'Z’ZR+P,P,P,]Y

upon substituting Xb, 4 U for Y in (16), the following condition must hold
for Ty to have zero mean under H, :

X'[ZR + R'Z —R'Z'ZR]X = X'P X a7

The condition in (17) indicates that ZR must be of the form
(AP, + AP PY/(A, -+ Ay, where A, and A, are fixed constants. Hence

-
iy
0 —

Ay (A 122, A TA ]
0

(A F Ay Thet (18)

When A, = 0,ZR =P, thenT, = TL,. An asymptotically equivalent
test statistic is obtained as the t-ratio of the OLS estimate of a in the artificial

regression (11), which is obtained by replacing Zb; in (15)

by P,Y. Thetest a« =0in(11) is the J test of Davidson and Mac Kinnon (1981).
When A, = 0, ZR = P,P,, then Ty = TA,. An asymptotically equivalent

test to TA,1s the t ratio of the OLS estimate of « in the artificial regression (12),

which is obtained by replacing Zb; in (15) by P,P,Y.

The test o« = 0 1n (12) 1s the JA test of Fisher and McAleer (1981).

When A, A, = 0, ZR = (AP, + AP.P)/ ( A, + A),and Tgis given
as 1 (18). As previously explained, an asymptotically equivalent test
statistic to TL, or TA, is therefore obtained as the t-ratio of the OLS estimate

of &’ in the artificial regression (13), which is obtained by replacing Zb; in (15)
by (AP, 4+ APPN/CA + A). The test @' = 0 in (13) is the JJA test.



8 The small sample behaviour of some non-nested tests

6. Small sample corrections and adjusted J and JJA tests

Apart from the JA test two other tests (J and JJA) are valid, only
asymptotically. Therefore in theory we cannot expect better performance of
these tests in small samples. Godfrey and Pesaran (1983) pointed out that
the small sample significance levels of the J test are not so well behaved and
are often too high. They also indicated that, as in the case of the Cox test,
this may be due to the non-zero expectation of the statistic under H, in small
samples. 1If this is the case, even for the JJA test, one cannot expect better
performance of significance levels in small samples because it also suffers
from the same problem. Along the lines suggested by Godfrey and Pesaran
1983), we can also derive mean and the variance adjusted J and JJA statistics
to eliminate the size deficiency in small samples.

6.1 Adjusted J test

Consider the numerator of the statistic of the J test given by
I=¢,Y,
' A
where e, 1sthe OLS residual vector of model H, and Y, = Zb, 1isthe

predicted value of Y from H,.

Using E, to denote the expectation under H,, we have

E, ) = ojtr M_P, = 0§ [k, — tr P,P,]

Define
Y = ¢,Y, — E, () = U'BU, + q'U, (19)
where
| M_P))
B = M,P, —tr E- o M,
n-k,
and

Assuming U, is independent N (0, 0§) from (19) we have

Vo (J) = 205tr (B%) + 03q'q

We are now in a position to define the following statistic for testing
H,. Define |
. R 'z

MJ — CIOYi "'" O‘% tr M{)PI |

N (20)
[205 tr (B?) + 05 €400 €100]F
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"t

where o2 = eje,/ (n-ky) and e,y stands for the OLS estimator of

q(= -MM, X by and can be computed consistently by the OLS residual
vector from the regression of e, on X (gy, is the OLS residual vector of the

regression of Y, (=XBO) on the explanatory varinble Z of the model H,.
Following Godfrey and Pesaran (1983) we can show that under H,, MJ 1s
approximately distributed as N (0, 1).

6.2 Adjusted JJA test

It can esily be shown that the statistic for the adjusted JJAI test statistic
(assuming A, = A, == 1) can be expresseed as |

MIJAL = Y'PY - Y'PPPoY, - o tr MgP, 21

[20% tr (BY) + 403 € 50810012

. (MoPp
where B =P, — P,P\Py —tr — M,

n-kq

As in the case of the MJ test it can easily be established that, under H,,
MJJALI is also approximately distributed as N(O, 1).

It is noteworthy to mention here that the mean of the JA test is zero
even in small samples and also its variance IS already in adjusted form.
Thecefore no adjustment can be made as in the other similar tests.

The existence of asymptotically equivalent tests with substantially different
computational costs raises the issue of whether there are significant finite
sample size and power differences among these alternative procedures. Indeed,
in most practical applications it will be difficult if not impossible, to tell whether
a large number of observations guarantees that the finite sample distributions
at the different test statistics are close to their asympotois distributions. There-
fore it is necessary to evaluate the finite sample properties of these tests.

In the rest of the paper we shall employ Monte Carlo experiments to
evaluate the small sample performances of three closely related and asymptoti-
cally equivalent test procedures namely the J test, the JA test and the JJA test.
We shall consider three variants of the JJA test by assigning different
values to A, and ,. Those are the JJAT test (A = 1, 2, = D), the JJA2 test
(A, = 1,5, =2) and the JJAJ test =1, 4, =73). Adjusted Jand JJAI
tests will also beincluded inour experiments to sec whether any significant
improvement will occur be keeping small sample means under H, equal to

zero and adjusting the variance accordingly.



10 The small sample behaviour of some non-nested tests

7. Description of the Monte Carlo experiments

Previous Monte Carlo studies have reported that the J test has poor
size when the false model has more parameters than the true model (i. e. k,
>ky), while the JA test has poor power when k, > k,. This indicates that
the number of parameters of the model will play a crucial role in determining
the small sample performance of these tests. Also the correlation among the
regressor variables across the two models may affect the properties of the

tests. Therefore we will pay attention to these points when we designing our
experiments.

The model used to generate the n observations was
Y, =X Xs+ U, t=1,2...... n (22)

The values of X,; were generated according to N(0, 1) using TSP Random
procedure and kept fixed in repeated sampling. The values of U, were
 generated according to N (0, 02) by setting the value of o2 so as to ensure
the population multiple correlation coefficient of (22), the true data generating
scheme, is equal to R2 That is

02 =k (1 - R?)/R?

The values of the explanatory variables of the alternative false model
were generated in the following manner :

Zti = ‘yixti + Vti i= 1,2, .o Inill (kO’ki)

and, if k; > k,

Zti —_— Vﬁ, i=k0+], . .,kl
with v, ~ N(o, 1), for t=1, 2,....,n

The values of & were set according to

yi = p/(1 —pH%, i=12,. min(k, kl

This ensures that the simple correlation between x,; and z; i1s equal to
p;, for i=1, 2,....min(k,, k,) and that other x; and z, are uncorrelated.
In all experiments we considered fixed alternatives to (22) and set p; = p.
Note that k, and k,, here denote the number of variables specific to the two
models, i. e. the number of non-overlapping variables in H, and H, respectively.
Thus we restrict our experimental design parameters to (a) the population
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multiple correlation coefficient of the data generating process, (b) the correlation
coefficient between the regressers of the true and the false models and (c)
the number of non-overlapping variables in the two models.

Since the aim of this study is to compare the small sample performance
of various tests we selected n = 20 as our sample size. We conducted several
experiments with various combinations of values of R2, p? and the number
of non-overlappng variables. Each experiment was replicated 500 times.
Since our interest is in testing the adequacy of the models rather then in dis-
criminating between them we used two sided tests in our study.

For each of the 500 replications in each experiment we computed the
test statistics J4 JA? JJAI? JJA22 JJA32 MJ? and MIJAIZ. We then
computed estimates of the significance levels of these tests by calculating
the proportion of times that their corresponding test statistics exceeded :
the 5 percent critical value of the F,n-k,-1 distribtion in the case
of J2, JA2, JJAI?, JJA2? and JJA3?, and the 5 percent critical value of the
x* distribution in the case of MJ? and MIJJAIZ

Since the hypotheses considered here are non-nested, a null is taken to
be so only temporarily. Thus, the definition of the power of the test as the
probability of rejecting the false null hypothesis is not directly applicable
to the non-nested hypotheses. Therefore, we defined power as the probability
of making the correct decision as used in Pesaran (1974) and Godfrey and
Pesaran (1983) ; that is the probability of accepting the true model and,
rejecting the false one. We therefore, computed the proportion of times
that each of the tests resulted in the correct inference.

8. Results of the Monte Carlo experiments

8.1 Case of unequal number of regressors

Several interesting features emerge from these experiments. The small
sample significance levels of the J test are not well behaved and are often
too high. When the false model has fewer regressors than the true model,
1 e. k; <k, (k; = 2, k; = 4), this problem is not as serious as whern the false
model contains more regressors than the true model, i. e. k, > kg, (k, =4,k,=2),
very high values in the range 6—25 being obtained. Although the estimated
significance levels of the ‘JJA tests are higher than the nominal value the
gradual reduction of this difference can be observed when A, assumes higher
values. Especially for k, > k, this feature can be clearly seen. When k1 <k, there
is not much difference among the significance levels of the JJA tests and
except for a very few cases they assume values very close to the nominal
level. The significance levels of the MJ test are well behaved irrespectively
of the number of regressors in the models but in the case of the MJJAI test,

under rejection of H, cna be observed, more often.
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Although we cannot make meaningful comparisons of power of the
tests with different values of significance levels, we can observe that, for
k, > k,, the powers of the JJA tests are always greater than that of the J
test. A similar pattern can be seen even for k; < k, but in the lower range
of p%. It can be observed that the behaviour of the JA test 1s quite different
from that of the other tests. The power of the JA test is very sensitive to the
number of regressors in the models. It has considerable power when k >k,
but the performance is very poor when k, < k. For tests with acceptable
size MJ has the highest power in almost all cases. When k, > k, the powers

of all the tests decrease as p? increases but in the case of k, <k, some
irregularities can be seen.

8.2 Case of equal number of regressors

The results for the case of an equal number of regressors, namely
(ko k) = (2,2) and (4,4, are interesting in that the size of the J test is generally
acceptable for k, = k, = 2, but not for k; =k, = 4, especially in the lower
range of p2. Except for a very few cases with very low values of p?, the size
of the JJA tests are acceptable even for k, =k, = 4. As in the previous
case the downward trend of the significance levels of the JJA tests can be seen
especially in the lower range of p2 when k, =k, =4. The size of the MJ
test is well behaved in both cases but for k, = k, =4 the significance levels
of the MJJAI tests are very low.

As far as power is concerned, when k, = k, = 2, the power of the J test
is slightly higher than that of the JJA tests while when k, = k, = 4, especially
in the lower range of p?. the power of the JJA tests are assured higher value
than that of the J test. Although the power of the JA test is considerable
in both cases that will not reflect any superiority over the other comparable
tests. In both cases the power of the MJ test is slightly higher than that of
the MJJAI test.

9. Conclusions

What are we to make of these results ? According to previous Monte
Carlo studies it has been revealed that the J test has very high significance
levels when the false model contains more explanatory variables than the true
model (i. e. k, > k,) while the JA test has poor power for k; < k. Our findings
also generally confirm these results. In practical situations it will not be
known whether the true model has more or fewer number of regressors than
the false one the selection of the appropriate testing procedure is hardly,
possible. Although the behaviour of the J and the JA tests are highly sensitive
to the number of regressors in the two models, our findings reveal that the
behaviour of the JJA tests (especially JJA2 and JJA3) are not so sensitive to the

number of regressors in the models. Also wecan observe that their significance
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levels are always closer to the nomiral level than that of the J test and their
power, generally, 1s in line with that of the J test. These features with their
simplicity and ease of implementation (using existing computer packages)
reflectthe attractiveness of these tests in applied econometric studies.
Although the behaviour of the MJ test is quite acceptable in both respects
(power and size) computational complexity hampers the wide application
of this test.

If one 1s prepared to accept a slightly higher size at less computational
cost then JJA tests (especially JJA2 and JJA3) would be a better choice. On
the other hand, if one is more concerned about the optimum properties of the
tests rather than their computational complexity then the N test suggested
by Godfrey and Pesaran (1983) would be the best choice because the N test is
slightly superior to the MJ test but both involve roughly the same amount
of computation. The JA test can also be recommended if the models being
tested have the equal number of (relatively few) non-overlapping variables.
Finally as to the choice of non-nested tests, the mean and variance adjusted
tests seem to have no advantages over the JJA tests to balance their compu-
tational complexity.
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