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ABSTRACT

Breaking down natural habitats presents a major threat to biodiversity
through disrupted ecological connections, mutated species paths, and
enhanced separation of territorial areas. Most of these difficulties require
advanced analytical tools that combine geographic information
technology with Artificial intelligence (Al) capabilities to do better
habitat connectivity assessments. This review investigates the modern
development of remote sensing technologies alongside Geographic
Information Systems (GIS) and Al-powered models for habitat
fragmentation assessment and conservation planning designs.
Monitoring habitat transformations through time becomes possible
through high-resolution LiDAR-based satellite imagery and using
Unmanned Aerial Vehicles-based (UAV-based) monitoring, which delivers
extensive spatial data about habitat alterations. The analysis of
ecological corridors and the assessment of fragmentation metrics become
possible by implementing two GIS-based modeling techniques, consisting
of least-cost path analysis and circuit theory modeling. Deep learning
frameworks, including Convolutional Neural Networks (CNNs) and
Object-Based Image Analysis (OBIA), have revolutionized land cover
classification while simultaneously enabling automated connectivity
assessments by enhancing accuracy levels. The application of Al in
ecological assessments is hindered by challenges such as limited data
availability, poor model generalization, and a lack of interpretability in
predictive models. The study followed a systematic review approach to
formulate the review article to address the research focus. The review
research has been designed to achieve three objectives: to evaluate the
integration of Al techniques for improving data access at fine scales,
enhancing ecological connectivity metrics for sustainable habitat
management, and to examine the challenges and opportunities of using
Al and GIS in habitat connectivity, focusing on data access, model
interpretability, and classification consistency.
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Introduction

Fragmentation of habitats is one of the most
significant threats to the maintenance of
biological diversity in the world. Habitat
fragmentation is mainly attributed to the
anthropogenic land use alteration including
deforestation, agricultural expansion, and
urbanization (Floreano & de Moraes, 2021;
Alegbeleye et al., 2024). Simplification refers
to the situation where continuous habitats
are fragmented, splintered, or cut into small
fragment pieces, thereby reducing the
connectivity of the ecological space, the
ability of species to move within the space,
and making species more susceptible to
extinction (Prasad & Ramesh, 2019).
Disruption of connectivity can have great
consequences on such ecosystem processes
as species movement, gene flow, and resource
distribution (Gidey et al., 2017).

The habitat connectivity is critical to be
assessed, especially for the identification of
species’ requirements and mainly for
developing the appropriate conservation
measures. Field-based surveys have some
limitations when used to survey large
geographical areas. For this reason, they are
limited in spatial and temporal coverage
(Mohd Noor et al., 2018). Over the years, GIS
and Remote Sensing (RS) technologies have
helped in providing spatial data that makes it
easier to study habitat connectivity over
space and time (Chen et al.,, 2020). Landsat,
Sentinel-2, and MODIS imagery, along with
aerial images of Unmanned Aerial Vehicles
(UAVs) facilitate effective mapping of habitat
fragmentation and ecological corridors
(Akumu et al, 2021). They allow the
determination of critical parameters, for
example, patch cohesiveness, the density of
edges, and core area size, which characterize
the fragmentation level in landscapes (Berie
& Burud, 2018).

Al, especially machine learning algorithms
such as CNNs, has compounded habitat
classification and fragmentation detection
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even more (Gu & Zeng, 2023; Wang et al,
2022). Object-Based Image Analysis (OBIA)
as a part of image classification helps reduce
the subjectivity in habitat mapping and
improves the accuracy of the classification
due to the large degree of automation
(Kasahun & Legesse, 2024). Further, the
combination of Al with GIS modelling makes
it easier to predict the future fragmentation
status and enables conservationists to devise
the best approaches to habitat restoration
and connectivity.

However, some problems are still
encountered while carrying out habitat
connectivity assessment, as observed above.
Inaccessibility to high-quality GIS data,
variation in classification techniques, and the
interpretational factors of the Al models are
challenges that hamper habitat analysis (Ruiz
et al, 2023). Solving these problems
necessitates a clearer and systematic method

of data integration, the application of
Explainable Artificial Intelligence (XAI)
methodologies for improved Al
interpretability, and close cooperation

between ecologists, geospatial specialists,
and Al scientists (Macleod et al., 2007).

Narrative synthesis is for
synthesizing articles, especially when a
structured, descriptive approach is needed to
integrate complex research findings, explore

under-researched topics, or when meta-

important

analysis isn’t feasible. It allows a reviewer to
move beyond simple summaries by critically
analyzing and interpreting a body of
literature to create a cohesive and persuasive
argument (Sukhra, 2022; MD Anderson
Cancer Centre and National Institute of
Health). While a systematic review often
focuses on a narrow question in a specific
context, with a prespecified method to
synthesize findings from similar studies, a
narrative review can include a wide variety of
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studies and provide an overall summary, with
interpretation and critique.

This narrative review synthesizes current
advancements in the use of GIS, Remote
Sensing, and Al for evaluating habitat
connectivity in fragmented landscapes,
drawing on more than thirty peer-reviewed
articles systematically identified through
Emerald, Google Scholar, Elsevier Scopus, and
JSTOR databases to ensure comprehensive
coverage of recent technological
developments and their applications in
ecological conservation.

The review aims to evaluate the accuracy and
applicability = of  habitat  recognition
technologies, explore methods for detecting
ecological connectors, and assess the role of
geospatial and Al approaches in supporting
conservation  planning and  habitat
restoration under the pressures of
fragmentation. This narrative review covers
literature published between 1988 and 2024,
selected through thematic relevance and
recent advancements in geospatial and Al -
based habitat connectivity analysis.

Geospatial Technologies for Habitat

Connectivity Analysis

Habitat fragmentation is one of the most
notable threats to the biotic interactions and
continues to impede species mobility and
change the dynamics of the population.
Remote Sensing (RS) and Geographic
Information Systems (GIS) provide strong
techniques to analyze habitat connectivity.
Combining the spatial detailed resolution and
the modeling, scientists can determine the
changes of the land cover to monitor the
connectivity and the possible pathways
(Floreano & de Moraes, 2021; Alegbeleye et
al, 2024). They apply techniques that
enhance the accuracy of the assessment of the
habitat fragmentation and the decision-
making for its reduction at the detriment of
the species biodiversity (Chen et al., 2020).
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Remote Sensing Applications in Habitat
Connectivity Analysis

Remote Sensing is useful since it offers time
series, fine-scale data that is required in the
identification of habitat fragmentation and
assessment of ecological connectivity.
Multispectral and hyperspectral data
provided by satellites such as Landsat,
Sentinel-2, and MODIS can provide the
necessary satellite data of vegetation cover,
deforestation, and habitat degradation (Mohd
Noor et al,, 2018; Guzman et al.,, 2013). They
are valuable in the classification of land cover,
which would help the identification of habitat
patches, degraded areas, and likely
movement pathways of animals.

Other techniques of remote sensing that
could be wused for habitat connectivity
assessments include Unmanned Aerial
Vehicles (UAVs), while LiDAR offers more
detailed information than satellite imagery
due to its ability to penetrate forest canopies
and generate  high-resolution three-
dimensional structural data of vegetation and
terrain (Su & Bork, 2006; Pang et al,, 2021).
UAVs have the advantage of providing near
real-time imagery, allowing for the
identification of fragmentation at localized
scales and within finer spatial resolution
(Akumu et al, 2021). LiDAR provides
structural information of vegetation cover,
density, and terrain that, in turn, affects
habitat carrying capacity for different species
(Bi et al., 2018). The integration of UAV and
LiDAR carries greater detail regarding habitat
classification, resulting in a more accurate
connectivity model and planning of
conservation.

Remote sensing data makes it possible to
analyze habitat connectivity across both
spatial and temporal scales, enabling the
assessment of past fragmentation patterns
and the prediction of potential future
alterations in habitat connectivity (Chen etal.,
2020). Moreover, remote sensing in habitats
provides information known as species
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distribution modeling (SDM), whereby
ecology and space variables are used to
model habitats based on the occurrence and
movement prediction (Kasahun & Legesse,
2024). Incorporation of remote sensing
information within other  Geographic
Information Systems (GIS) databases helps in
improving conservation planning and
rehabilitation of connectivity in fragmented
ecosystems.

GIS-Based
Assessment

Habitat Connectivity

Spatial analysis for habitat connectivity is
made easier by the use of Geographic
Information Systems (GIS), which enables
spatial data to be processed, analyzed, and
presented in the form of networks. GIS
analysis allows conservationists to determine
how alterations in land-use patterns affect
connectivity, where suitable connectivity
may be established, and where permeability
should be promoted (Prasad & Ramesh,
2019). Connectivity analysis techniques that
are commonly used in GIS include the Least
Cost Path Analysis (LCPA), which helps in
determining the movement corridors of
wildlife. Since LCPA takes into consideration
landscape resistance factors such as the type
of cover, elevation, and human interference, it
enables conservation planners to develop
wildlife corridors that are least interrupted
by barriers (Gidey et al., 2017).

Moreover, Circuit Theory Modeling is more
effective for evaluating habitat connectivity
than LCPA as it focuses not only on the
optimal trace but on the multiplicity of them.
Stochastic Random Walk Modelling (SRMM)
approximates ecological connectivity across
landscapes by treating habitats as conductive
rather than applying resistance to movement,
allowing the estimation of the probability of
species movement between disparate
patches (Ruiz et al, 2023). These circuit
models are specifically useful in defining
circuit connectivity obstacles and developing
paths to conserve species with varying
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movement patterns. Thus, the inclusion of
multiple  pathways into  connectivity
assessments improves conservation planning
to ensure that corridors provide a buffer to
environmental and human interferences.

In addition to spatial analysis, habitat
connectivity mapping involving GIS has other
quantitative measures, such as the Patch
Cohesion Index and Core Area Analysis. The
Patch Cohesion Index quantifies how well
habitat patches are connected in order to
determine if there is still considerable
connection for dispersal between fragmented
regions (Wang et al, 2022). Core Area
Analysis relates to the continuity of the
natural habitat within a given landscape,
assisting conservation planners in
determining whether certain areas within
such a landscape are capable of supporting
species in the long term. Thus, the linkage of
such metrics with remote sensing-derived
land cover data offers a GIS-based assessment
that provides a complete picture of habitat
fragmentation and contributes to evidence-
based approaches to conservation practices
(Kasahun & Legesse, 2024).

Challenges and Future Directions

There are still limitations in using
geographical information system
technologies in  habitat  connectivity

assessments. This is mostly due to the
unavailability of high-resolution geospatial
data that could be attributed to high costs and
licenses in owning satellite images and LiDAR
datasets, especially in the developing world
(Ruiz et al, 2023). Failure to maintain
standard approaches to classification, as well
as differences in spatial scale, can in sum lead
to differences in the models employed for
habitat connectivity and thus differences in
outcomes in conservation planning. These
matters call for further specifications on how
to integrate different datasets as well as the
improvement of other methods, such as Al-
based ones, to step up the accuracy of
connectivity assessments.
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The next horizons for the field of habitat
connectivity research are a seamless
integration of Al with GIS and remote sensing.
Machine learning methods, including CNNs
and OBIA, can help increase the level of

accuracy of habitat classification and
connectivity assessment (Gu & Zeng, 2023;
Wang et al, 2022). Moreover, live

connectivity modeling through Al and high-
frequency RS data can enhance conservation
monitoring by offering timely insights about
fragmentation and connectivity status.

Integration of remote sensing with GIS offers
unique insights for conservationists to
evaluate habitat fragmentation, identify
suitable corridors, and support geographic
management  options, among  other
applications. Future research should aim at
further developing Al methods for improved
modeling, acquiring  more  detailed
geographic data, and promoting
collaboration between researchers from
different fields for better assessment of
habitat connectivity. It is possible to conclude
that by increasing the efficiency of
technological developments and addressing
existing issues, geospatial technologies will
further help in preserving and rehabilitating

ecological connectivity in fragmented
habitats.

Al-Driven Approaches for Habitat
Connectivity

Artificial Intelligence (AI) has now become
significant in the functioning of ecology,
especially in mapping and evaluating the
connectivity and fragmentation of habitats.
The existing literature on habitat loss and
connectivity mapping using remote sensors
and GIS-based tools has, however, been found
to be more time-consuming as these methods
require intensive interpretation, and their
classification accuracy could be compromised
in complex terrains. Deep learning and
machine learning models help in these
processes by automating classification,
increasing precision, and analyzing large
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amounts of data efficiently. Convolutional
Neural Networks (CNNs) enable automated
feature extraction and high-accuracy
classification by learning complex spatial
patterns within satellite imagery, while
Object-Based Image Analysis (OBIA)
segments imagery into meaningful objects
based on spectral and spatial characteristics,
allowing for more precise delineation of land
cover types and habitat patches. These
methods have significantly improved the
detection of habitat fragmentation compared
to traditional pixel-based classification
techniques, which often fail to capture the
spatial context required for accurate mapping
(Floreano & de Moraes, 2021; Alegbeleye et
al, 2024). The combination of Al with GIS
helps in examining ecological networks by
providing valuable information on habitat
connectivity and planning approaches
toward the conservation of biologically
diverse species.

Al in Habitat Fragmentation Detection

Fragmentation of habitat depends on the
classification of land cover as well as
detecting changes in land surface features.
Using CNNs, situation awareness and
prediction of fragmented patches have been
made much easier due to the reduced
complexity and time efficiency of machine
learning models. CNNs process high-
resolution satellite imagery, learning spatial
features that can distinguish between various
habitats, degraded states, and man-made
obstructions (Mohd Noor et al, 2018;
Guzman et al, 2013). Compared to
conventional  pixel-based classification
techniques, CNNs can detect complex spatial
patterns, thereby enhancing the assessment
ofhabitat fragmentation (Herath et al., 2024).

Object-Based Image Analysis (OBIA)
enhances classification by segmenting
satellite imagery into meaningful objects
based on spectral, spatial, and textural
characteristics, rather than analyzing
individual pixels in isolation. This approach
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allows for the consideration of shape, size,
and contextual relationships between
features, resulting in more accurate land
cover mapping and habitat patch
identification. Compared to pixel-based
techniques, OBIA effectively minimizes
classification errors and enables more
precise differentiation of habitat patches
(Akumu et al, 2021). When implemented
with deep learning, OBIA can automate
habitat fragmentation detection, track land
cover changes over time, and evaluate the
effects of human interference on ecological
networks (Berie & Burud, 2018). Machine
learning also facilitates the classification of
large areas, making it useful for habitat
fragmentation assessments that require
rapid and large-scale landscape mapping
(Chen etal,, 2020).

Al and Ecological Corridor Prediction

In addition to habitat categorization, Al is
increasingly used for predicting ecological
linkage areas, which serve as pathways
between fragmented habitat regions. Al
models can predict potential habitat
corridors by analyzing vegetation
connectivity, land cover, image texture, and
background characteristics that indicate
strategic pathways for wildlife movement
(Kasahun & Legesse, 2024). These models
assist conservationists in determining
feasible connectivity paths and in assessing
the permeability of existing corridors under
fragmentation pressures.

Integration of Al with GIS enhances corridor
mapping by incorporating Species
Distribution Modelling (SDM), Maximum
Entropy Modelling (MaxEnt), and terrain
analysis into connectivity assessments,
thereby improving the identification of
potential corridors and suitable habitats
(Prasad & Ramesh, 2019). Hybrid AI-GIS
frameworks employ predictive modeling to
estimate wildlife dispersal distributions and
evaluate the efficiency of potential corridors.
Combined with Al-based classification
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outputs, Least Cost Path Analysis and Circuit
Theory Models can identify pathways that are
optimal in terms of habitat quality, landscape
characteristics, and anthropogenic resistance
(Gidey et al,, 2017). These predictive models
assist conservation planners in developing
targeted habitat restoration projects and
strategies that minimize the impacts of
fragmentation.

Future studies should focus on enhancing Al
model interpretability, addressing biases in
training datasets, and incorporating real-time
remote sensing data for efficient connectivity
assessments. Applying Explainable Al (XAI)
techniques will improve the transparency of
methodologies in ecological modeling,
ensuring that decisions are based on reliable
and interpretable outputs (Ruiz et al., 2023).
The application of Al toolsets in habitat
connectivity analysis is a promising strategy
to ensure the automation, scalability, and
precision of fragmentation and ecological
network assessments in rapidly changing
landscapes.

Challenges in Habitat

Analysis

Connectivity

There are several challenges observed even
with reasonable advancements made in the
application of geographical information
technology and Al for measuring habitat
connectivity. Habitat fragmentation
assessments are sensitive to the resolution of
available population and land cover data,
consistency in classification methods, and the
interpretability of machine learning models.
Multi-temporal datasets are essential in
remote sensing and GIS for measuring
landscape connectivity, but challenges such
as differing spatial resolutions and limited
visibility of high-quality satellite images
constrain studies (Floreano & de Moraes,
2021; Alegbeleye et al., 2024). Additionally,
controversies  exist regarding model
interpretability, applicability of results to
diverse ecosystems, and data processing time
(Mohd Noor et al, 2018). These issues
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present significant concerns in enhancing the
ability to determine habitat connectivity and
ensuring the credibility of conservation
planning.

Resolution

Data  Availability and

Constraints

One of the main difficulties in performing
habitat connectivity analysis is the scarcity of
high-resolution remote sensing data. Satellite
data are essential for identifying fragmented
habitats and monitoring land cover changes;
however, acquiring these datasets often
involves high costs and licensing restrictions
(Guzman et al,, 2013). While freely accessible
datasets such as Landsat and MODIS provide
medium-resolution data, they may not
capture finer connectivity structures
necessary for detailed habitat assessments
(Akumu et al, 2021). In contrast, high-
resolution datasets from commercial
satellites like WorldView and Pleiades offer
detailed imagery but are often prohibitively
expensive, particularly for conservation
initiatives in developing countries (Berie &
Burud, 2018).

Challenges also arise from inconsistencies in
spatial and temporal resolutions across
datasets, which impact the quality of
connectivity models. Missing data due to
shadows, poor sensor quality, or irregular
collection schedules can hinder accurate
classification of habitat patches, affecting the
reliability of connectivity assessments (Chen
et al, 2020). Furthermore, the lack of
uniformity in resolution among datasets
complicates integration processes, making it
difficult to harmonize classification results
for long-term monitoring (Kasahun &
Legesse, 2024).

Addressing these challenges calls for the
development of open-source remote sensing
platforms and efficient methods for
integrating multisource data to facilitate
more  accurate  habitat  connectivity
assessments.

66

Al Model Interpretability and Reliability

The use of artificial intelligence in habitat
connectivity analysis introduces challenges
related to model interpretability and
generalizability. While deep learning models
such as CNNs have achieved high accuracy in
habitat classification and fragmentation
detection, their decision-making processes
remain opaque, complicating ecological
validation (Prasad & Ramesh, 2019). This
‘black box’ nature makes it difficult to
understand why certain regions are classified
as habitat corridors while others are not
(Gidey et al., 2017). Although Explainable Al
(XAI) methods are being developed to
improve interpretability, their application in
ecological modeling is still in its early stages
(Ruiz et al., 2023).

Model generalization across different
landscapes presents another significant
challenge. Al models trained on specific
regions may not perform reliably in new
environments with different vegetation,
climate, or anthropogenic factors (Wang et
al,, 2022). Given that habitat fragmentation is
influenced by diverse ecological and
environmental factors, developing Al models
that accurately predict fragmentation across
varying ecosystems is complex. Approaches
such as transfer learning and regional model
calibration have been proposed, but their
effectiveness depends on the quality of
training datasets and computational
resources (Kasahun & Legesse, 2024).
Ensuring the reliability of Al-driven habitat
connectivity assessments will require further
development of training methodologies and
the establishment of standardized validation
procedures across different ecological
settings.

Overall, concerns regarding data availability,
resolution variability, and model
interpretability highlight the critical need for
integrating remote sensing, GIS, and Al
technologies in  habitat  connectivity
evaluations. Future studies should focus on
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increasing the availability of high-resolution
geospatial data, enhancing Al interpretability,
and developing comprehensive algorithms
capable of optimizing model performance
under diverse ecological conditions. By
addressing these challenges, the assessment,
communication, and application of habitat
connectivity can be strengthened, supporting
effective  conservation planning and
biodiversity management efforts.

Future Research Directions

The integration of Al and GIS for habitat
fragmentation analysis has shown promise,
but further advancements are needed to
improve accuracy, data availability, and the
use of ecologically meaningful metrics. Future
research should prioritize enhancing Al
model interpretability, establishing
sustainable geospatial platforms for real-time
habitat monitoring, and refining connectivity
metrics to better align with conservation
needs.

The interpretability of machine learning
models remains a major challenge in Al-
driven habitat connectivity analysis. Despite
deep learning algorithms achieving high
accuracy in classifying habitat patches and
detecting fragmentation, the decision-making
processes of these models often remain
unclear  to researchers. Continued
development of effective Explainable Al (XAI)
approaches is essential for enhancing trust in
Al models and ensuring their outputs are
interpretable and actionable for conservation
planning.

Designing open-source data platforms to
facilitate real-time monitoring of corridor
connectivity presents another critical avenue
for future research. High-resolution satellite
imagery and geospatial data are often limited
in many conservation initiatives, particularly
in developing countries. Integrating cloud-
based GIS platforms such as Google Earth
Engine with Sentinel-2 and MODIS can
provide timely and accurate habitat status
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assessments. Additionally, incorporating
citizen science and crowd-sourced ecological
data can enrich habitat connectivity models,
expanding data availability and spatial
coverage.
Improving ecological connectivity
measurements is another priority for
conservation planning. While current
connectivity indices provide useful measures
of species dispersal and habitat linkage, they
have limitations in capturing the full
complexity of habitat connectivity. Future
research should explore the use of Graph
Theory and Circuit Theory analyses to
enhance connectivity assessments, providing
more comprehensive evaluations of habitat
networks and potential corridors.

By addressing these research directions, the
integration of Al, GIS, and remote sensing in
habitat connectivity analysis can be
optimized, enabling more accurate, scalable,
and ecologically meaningful conservation
strategies in the face of rapid environmental
change.

Conclusion

The integration of Geographic Information
Systems (GIS), Remote Sensing, and Artificial
Intelligence (AI) has significantly enhanced
the evaluation of habitat connectivity in
fragmented environments. These
technologies provide essential tools for
mapping environmental patterns, detecting
fragmentation, and identifying ecological
connectivity corridors that support species
mobility and conservation (Floreano & de
Moraes, 2021; Alegbeleye et al, 2024).
Utilizing high-resolution satellite imagery,
UAV-based data collection methods, and Al-
driven classification guidelines enables
researchers to improve habitat identification
and overall habitat management (Mohd Noor
et al, 2018; Guzman et al, 2013). Spatial
modeling analyses within GIS frameworks,
such as Least-Cost Path Analysis (LCPA) and
Circuit Theory Modeling, further support
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conservation measures by estimating
connectivity lengths and informing habitat
restoration strategies (Prasad & Ramesh,
2019).

Despite these advancements, several
challenges remain unaddressed in habitat
connectivity analysis. Issues such as the
limited availability of high-resolution
geospatial data, inconsistencies in
deforestation classification approaches, and
the interpretability of Al-based models
continue to hinder standardized and effective
connectivity assessments (Ruiz et al., 2023).
Addressing these challenges will require
interdisciplinary collaboration, the expansion
of open-source remote sensing platforms, and
the optimization of Al algorithms to enhance
the accuracy and quality of ecological
modeling (Kasahun & Legesse, 2024). The
integration of Explainable Al (XAI)
techniques with geospatial analysis offers the
potential to improve transparency and
predictive capabilities in assessing habitat
fragmentation dynamics (Gidey et al., 2017).

Future research should prioritize the
development of open-access geospatial data
portals to facilitate real-time monitoring of
habitat connectivity, the refinement of
ecological  modeling  approaches to
accommodate multi-species mobility
frameworks, and the incorporation of Al to
optimize  classification accuracy and
connectivity estimation (Chen et al.,, 2020). As
environmental  pressures on  natural
ecosystems continue to intensify,
conservation efforts by stakeholders will
increasingly depend on the application of big
data analytics for effective planning and
management.

The integration of GIS, Remote Sensing, and
Al not only addresses current gaps in habitat
connectivity research but also offers scalable
and adaptable tools for biodiversity
conservation planning. Moving forward,
habitat connectivity research should adopt
innovative  approaches and emerging
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technologies, including advanced Al methods,
GIS analyses, and ecological modeling, to
develop coherent, efficient, and impactful
conservation policies that support the
preservation of biodiversity in rapidly
changing landscapes.
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