
Vidyodaya J., of sa., (1992) Vol. 4, No. J, pp: 137- 145

A NUMERICAL TECHNIQUE TO DETERMINE THE MAGNETIZATION
OF A TWO DIMENSIONAL BODY

D. A. Tantrigoda
Department of Physics.

University of Sri Jayewardenepura,
Nugegoda, Sri Lanka.

Received on: 17- 06 -1992
Accepted on: 09 - 08 -1992

Abstract

A simple numerical technique that permits the determination of the
magnetization of a two dimentional body, producing a magnetic anomaly
as well as a gravity anomaly, is presented. This technique involves the com-
parison of the Fourier transform of the magnetic anomaly, computed starting
from the gravity anomaly using the Poisson relationship, with the Fourier
transform of the observed magnetic anomaly and can easily be extended to
the three dimensional case (to determine the direction of magnetization only)
As most of the magnetized basic rocks that produce magnetic anomalies also
produce gravity anomalies, the present technique has useful practical
applications in the interpretation of magnetic anomalies.
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1. Introduction

Numerical techniques are available to determine the shape and size of
a subsurface structure, causing a magnetic anomaly, using the measurements
of the anomaly made on the surface on the earth or above (Bott, 1973). This
is generally known as the solving of the inverse problem in magnetics. The
magnetization of the causative body is an important parameter in this
calculation. The magnitude of magnetization of a rock sample can be obtained
relatively easily determining its susceptibility. However, the measurement
of the direction of magnetization, when the remanent component is not negli-
gible, requires the use of instruments that are normally used in paleomagnetic
work.

This paper presents a simple numerical technique to determine the magne-
tization of a two dimensional body which produces both gravity and magnetic
anomalies. Most of the basic rocks that produce magnetic anomalies have
positive density contrasts compared to the country rocks and therefore produce
positive gravity anomalies. Examples for such basic rocks can be found
in the Teitiary volcanic centres such as Mull and Skye in the NW Scotland
(Bott and Tantrigoda, 1986; Tantrigoda, 1988) and in the Blackstones Bank
in the sea areas of Hebridees (Tantrigoda, 1986). The present technique,
therefore has useful practicalappiications. This technique requires the
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density contrast of the causative body and does not make any assumptions
regarding its shape. Further, this can easily be extended to the three dimensio-
nal case, but only to determine the direction of magnetization provided the
density contrast as well as the magnitude of the magnetization of the causitive
body are available.

2. Theory

·P(x,z)
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z
Fig. 1 Coordinate system used in the derivation of the technique and the

location of the point P and the body B.

Let XZ be a two dimensional Cartesean coordinate system with the Z-axis
pointing vertically downwards and V(x,z) and U(x,z) be the magnetic and gravity
potentials produced by a body B situated below the X-axis at a point P(x,z)
above the X-axis (fig. 1). The magnetic potential V(x,z) and the gsavity
potential U(x,z) are connected by the Poisson relationship.

v = - J. VU
4i1\PG (1)

Where J and p are the magnetization vector and the density contrast
and G is the gravitational constant. If s is the direction of earth's total field,
then the magnetic anomaly f (x.z) produced at P can be writted as,

f{x,z),-=~J(-s J +5 J )
4 7\p G 1 x x z z

~!!.+ (5 J +5 J ) ~ou \ (2)
2 x z Z x ox 2 J02
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If g (x,z) is the gravity amomaly produced by B at the same point P, then
(2) can be written as,

f(x,z)= ~ r(-s :r +5 :r ) 09
41\PG x X z Z a1 + (s 'J +s J ) ag} (3)

X Z Z 'x OX

Let us assume that we are intending to analyse a magnetic anomaly
f (x,£) and a gravity anomaly g (x,£) measured over a lenght L and sampled
at N equal intervals. Since the gravity amomaly and magnetic anomaly both
satisfy the Laplace equation in the Cartesean coordinates, f (x.z) and g(x,Z£)
can be written as (Bott, 1973).

f(x,z)= exp l2 i\ kz 1 (4)

L

N-l .
g(x,Z)= E GCk')exp'[2 X l.kx )

k=O ", L

,j

expF X kZ],
.L

(5)

Where, F(k) and G(k) are complex Fourier coefficients of the magnetic
and gravity anomalies, Let Xm(k) and Ym(k) be the real and imaginary parts
of the Fourier transform of the magnetic anomaly and Xg(k) and ¥1I(k)be
the real and imaginary parts of the Fourier transform of the gravity anomaly.
Substituting for f (x.z) and g (x,z) in (3) from (4) and (5) and expressing Ftk)
and Gtk) in terms of their real and imaginary parts we get,
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N-I

~O {X",_(k)+iYm(;,: ~xp {2~~kr. J ~,~pl2~~~,~r)

N-l

= " ( ~k \'[ {:-J (X (k)s +Y (k)s )+J (X (k)s -Y (k )s )}L ---I X 9 X 9 z z 9 z 9 x
K.O 2pGL .

+i {j (X (k}s -Y (k)s )+J (X (k )» +Y (k'h; ,,)}.
X 9 z 9 X z g, x 9 I z

The right hand side of the above equation gives the real and imaginary
parts of the Fourier coefficients of various frequencies k of the magnetic
anomaly calculated starting from the gravity anomaly, at a set of N points,
using the Poisson relationship. The left hand side of the equation gives
real and imaginary parts of the Fourier coefficients of the magnetic anomaly
for different frequencies k computed directly form the observed magnetic
anomaly at the same set of N points as in the previous case. Both sides of
(6), therefore gives the real and imaginary components of the Fourier
transform of the same magnetic anomaly. By equating the real and imaginary
parts of the Fourier coefficients on the left hand side to those of the right
hand side for different k we get,

-J {X (k)s +Y (k ls }+ J {X (k)s - Y (k)s 1= (2PG1)X (k)
X 9 x 9 z z 9 z 9 xl ~oK. m

J {X (k )s -Y (k)s }+J {X (k)s +Y (k)s } =(2PGl..)Y (k)
X 9 z 9 x z 9 X 9 z • ""0 k:. In

for k= 1,2,3..- N/2
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There is no point in equating terms corresponding to k>Nf2 as the real
and imaginary parts of a Fourier transform of a real function are symmetric
and antisymmetric respectively. No new information can be obtainhd by
equating the terms having k greater than the folding frequency. Equations
(nand .(8) can be solved immediately to obtain J, and J, corresponding to
different k values. As it is explained earlier the present technique gives Nf2
sets of values for Jx and J£ and this will be discussed in more detail later.

3. Testing of Tbe Method
A computer routine which uses a fast Fourier transform algorithem

(Cooley ane Tukey, 1965) has been written to calculate the horizontal (Jx) and
vertical (Jz) components of the magnetization vector and has been used to
test the validity of the preceeding method. Magnetic and gravity anomalies
due to a two dimensional rectangular body having known J, and J, values
and a density contrast were calculated using Bott (1973) (Fig. 2). These
gravity and magnetic anomaly values were used as input data to the above
programme and two sets of values were calculated for J, and Jz correspond-
ing to different k values (ie. for different frequencies). As can be seen from
the Table I that calculated J, and Jz values are correct within the error range
of 10 percent corresponding to k=2, 3 7. However the error becomes
significantly large for larger k values,
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Gravity and magnetic anomaly values (due to a 2D rectangular
body) used for the testing of the technique,



142 D. A. Tantrlgoda

Table Calculated values of Jx and J, for different k values.

k Jz(Am-l) Percentage Error
JiAm-l)

Percentage Error
(Am-I) (Am-I)

1 2.20 1.4 2.41 3.4

2 2.16 0.3 2.55 2.1
3 2.16 0.3 2.45 2.2
4 2.18 0.6 2.57 2.9
5 2.14 1.0 2.40 3.9
6 2.20 1.4 2.65 6.1
7 2. II 2.4 2.29 8.0
8 2.23 3.1 2.85 14.1
9 2.05 4.9 2.08 16.8

10 2.22 2.3 3.43 37.2
II 1.93 10.8 1.63 34.8
12 0.92 57.6 5.45 ll7.9
13 1.54 29.1 0.83 66.9
14 -2.71 225.1 0.55 77.9
15 0.54 75.2 -0.06 100.3
16 -0.06 103.1 -0.15 106.1
17 -0.53 ]24.4 -0.11 104.3
18 0.46 78.5 -0.03 101.6
19 -.88 140.6 0.12 95.2
20 0.54 74.9 -0.04 101.6
21 -0.80 137.3 -0.23 190.9
22 0.47 78.3 -0.07 103.0
23 -0.62 128.8 -0.24 90.3
25 0.35 83.9 -0.10 103.9
26 -0.44 120.6 0.23 90.9
27 0.23 89.3 -0.09 103.8
28 0.30 113.9 0.21 91.5
29 0.14 93.4 -0.08 103.8
30 -0.19 108.7 -0.20 91.8
31 0.09 95.5 -0.06 102.5
32 -0.07 103.4 0.22 91.2
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Normally magnetic measurements consists of high frequency instrumental
noise and also noise due to the narrow near surface magnetic intrusive bodies.
Therefore to see how successfully the present technique can cope up with such
situations, the test was repeated after adding 5 percent random noise to the
both gravity and magnetic anomalies due to the two dimensional body
mentioned earlier. The results are depicted in Table 2 and as can be seen that
the calculated J, and Jz values are correct within 10 percent error for k=I,2,3,4.

Table 2 Calculated values of J, and J, for different k values. 5 % random
noise has been added to both gravity and magnetic anomalies.

k (JxAm-l) Percentage Error
Jz(Am-l)

Percentage Error
(Am-I) (Am-I)

1 2.21 1.9 2.43 2.6
2 2.20 1.4 2.54 1.0
3 2.21 2.1 2.39 4.4
4 2.28 5.5 2.44 2.5
5 2.29 6.2 2.23 1005
6 2.46 13.7 2.37 5.3
7 2.41 11.1 1.86 25.4
8 3.16 46.1 2.33 6.9
9 2.65 22.3 1.58 36.9

10 3.66 69.2 0.46 81.6
II 1.66 23.3 0.10 104.1 .
12 1.59 26.5 -0.20 108.1
13 0.99 54.4 -0.11 104.6
14 0.72 66.6 0.27 88.9
15 0.08 96.2 -0.16 106.2
16 -0.38 117.4 -0.27 110.8
17 -0.16 107.5 0.07 97.2
18 0.21 90.3 0.19 92.3 .
19 0.08 96.5 0.49 80.3
20 0.61 71.9 0.04 101.5
21 0.34 84.2 0.36 85.5
22 0.22 89.6 0.02 99.2
23 -0.26 111.9 0.02 99.2
25 -0.10 104.8 -0.15 106.1
26 -0.03 101.4 0.11 95.5
27 0.22 89.7 0.16 93.7
28 11.17 415.8 0.24 90.3
29 0.03 98.5 -0.44 117.7
30 -0.13 105.9 -0.20 108.7
31 0.06 102.6 -0.03 1OI.3
32 -o.or 100.5 0.02 09.1
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4. Dlscnscion

A simple numerical technique which permits the determination of the
magnetization of a two dimensional body producting a gravity anomaly as
well as a magnetic anomaly is presented. The technique was first tested using
gravity and magnetic anomalies produced by a two dimensional body and
then further tested using anomalies due to the same body after adding 5 percent
random noise to simulate high frequency noise and found working satisfactorily.
This can easily be extended to the three dimensional case only to determine the
direction of magnetization provided density to magnetization (magnitude)
ratio is known.

If the input gravity and magnetic data are sampled at equal intervals at
N points, then this method gives Nj2 values for J, and a same number of values
for J, corresponding to k=] ,2 .....H •••• Nj2. As it was pointed out earlier, only
the Jx and J, values corresponding to first few k values are correct. This
technique is based on the comparison of Fourier coefficients of the magnetic
anomaly calculated starting from the gravity anomaly, with that of the measured
magnetic anomaly for different frequencies (ie. for different k values). The
Fourier coefficients of higher frequencies normally get modified due to the
truncation effect and aliasing (Brigham, 1974). Calcuations carried out
comparing incorrect coefficients naturally give incorrect values for magnetization
components. The error due to aliasing can be removed by increasing the
number of sampling intervals and that due to truncation effect may be reduced
to a reasonable level by passing both the gravity and magnetic anomalies
through a suitable filter (eg. Hanning filter). However, it is not necessary
to do this, as one can obtain satisfactory results by taking the average of Jx

and Jz values which do not undergo more than 5 percent change compared
to the Jx and Jz values for k= I.

The numerical technique presented in this paper will be useful in the
interpretation of magnetic anomalies and may also provide information of
paleomagnetic significance.
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