Feature Article

Native Floral Species for Watershed Restoration and Enrichment in Sri Lanka

A.L.K. Amarasinghe¹, S.M.C.U.P. Subasinghe¹*, M.N. Hettiarachchi²

¹Centre for Forestry and Environment, Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Nugegoda, Sri Lanka ²Environment and Disaster Management Program, World Wildlife Fund, Washington DC, USA

Abstract

Sri Lanka faces frequent floods and land degradation almost frequently which is aggravated by high rainfall intensities and poor land management practices. This problem is common in most areas because about 90% of the total landmass of Sri Lanka comes within river watersheds. Though Sri Lanka is one of the richest countries in floral diversity, the recognition of native tree and plant species which are suitable for restoration of degraded lands in all three climate zones has not been done before. Therefore this study was conducted to fill that gap which is essential for land managers in both private and public sectors. With literature survey, field observations and expert interviews this study identified and developed a database of suitable native tree and plant species for restoration of watersheds and their conservation status, growth parameters, and the uses of each species.

Keywords: watershed planting, tree selection, enrichment, site degradation

1. Introduction

Since ancient times, humans have settled in flood plains due to factors such as superior agricultural productivity and ease of transport, which facilitated economic growth (Douben, 2006). Areas vulnerable to floods share certain common characteristics: they tend to occur in high rainfall areas of low elevations and close to streams, reservoirs or the sea. However, presence of any or all of these characteristics does not necessarily make an area flood prone, and their absence also does not make an area flood free (Disaster Management Center, 2004).

Human communities have used different methods for flood risk management historically. Broadly they can be catagorised as: hard engineering, soft nature-based and non-structural. Though hard engineering methods such as dams, and levees, are conventionally used and viewed to be more predictable, they can have lasting negative impacts on the hydrology and environment of a watershed. Further, construction of such structures are not socially and economical appropriate in many locations. Therefore the use of soft nature-based methods such watershed conservation or riparian zone restoration, are now increasingly drawing the attention in minimising the risk of floods.

Trees and forests play a vital role in managing flow water through a watershed and removing or filtering contaminants that would otherwise be transported to and through waterways. Thus, degraded land with reduced vegetation cover and biodiversity can increase the downstream flood risks, erosion, siltation and pollution related health hazards. Restoration of vegetation (growing and maintaining trees and plants) in degraded sites in watersheds can substantially minimise these risks.

^{*}Correspondence: upuls@sjp.ac.lk; upul.forestry@gmail.com Tel: +94 714450339 © University of Sri Jayewardenepura

Land owners, especially large scale plantation managers have started to pay a considerable amount of attention to the enrichment of watersheds, especially the stream and river buffers and degraded sties, primarily as a mandate but also to enhance the biodiversity, aesthetic value and water course protection. However, a proper system is not available in Sri Lanka to identify tree and plant species which are most suited for these diverse objectives and to match them with different climatic and geographical requirements. Therefore this study was conducted with the objectives of identifying the key requirements to be fulfilled with watershed restoration and enrichment; develop the criteria for selecting species for watershed restoration and enrichment regions in Sri Lanka. For this purpose the suitable native or endemic tree and plant species for different regions in Sri Lanka. For this purpose the suitable species were identified based on literary texts and formal and informal interviews with experts. The taxonomy status and characteristics were identified from various sources available in literature.

2. Watershed

A watershed is a topographically delineated area that is drained by a stream system. It is the total area above some point on a stream or river that drains past that point (Wang et al., 2016). It can also be defined as an area of land that drains water, sediment and dissolved materials to a common receiving body or outlet. The term is not restricted to surface water runoff and includes interactions with subsurface water as well. A watershed is also a hydrological response unit, a biophysical unit, and a holistic ecosystem in terms of the materials, energy, and information that flow through it. Therefore, as well as being a useful unit for physical analyses, it can also be a suitable socioeconomic-political unit for management planning and implementation. Watersheds can vary in size from thousands of square kilometres to a small area drained by a freshet (Wang et al., 2016). They vary from the largest river basins to just acres or less in size. Watersheds are classified depending on their size (Jaisval, 2016) as illustrated in the Table 1.

Table 1: Watershed classification based on the size.

Size of watershed (ha)	Category
1,000-10,000	Macro watershed
100-1,000	Micro watershed:
10-100	Mini watershed
1-10	Mille watershed

3. Flood

A flood is an overflow or inundation with water flowing from a river or other body of water causing severe damages (US Geology Survey, 2016). It is defined as the covering of normally dry land by water that has escaped or been released from the normal confines of any lake, river, creek or other natural watercourse, whether or not altered or modified; or any reservoir, canal, or dam.

On a global scale, river flood plains and coastal areas are the most susceptible to flooding. However, flooding can also occur in other areas, particularly those receiving unusually long periods of heavy rainfall. Bangladesh is the most flood prone area in the world, because it is a low-lying riverine country located between the foothills of the Himalayas and the Indian Ocean. It is vulnerable due to a long monsoon season which causes heavy rainfall (Farooq, 2008).

There are multiple and various factors which contribute to the global increase in flooding. These include meteorological factors such as rainfall, storms and changing temperatures, hydrological factors such as soil moisture and ground water levels, and societal factors such as changes in land use and occupation of flood plains. Even floods in urban areas are an increasing concern as cities and towns expand

rapidly, many along coastal lines, where sea level rise and sinking land (or subsidence) compound risk (Flood Green Guide, 2016).

The most common cause of flooding is the incapability of watercourses to drain away water during an unusually heavy rainfall. Floods, however, are not always caused by heavy rainfall. They can result from other natural or man-made phenomena (Farooq, 2008). When rainfall is received on a catchment, the amount of rainwater that reaches the waterways depends on the characteristics of the catchment, particularly its size, shape and land use. Some precipitated water is captured by soil and vegetation, and the remaining water enters waterways as flow. River characteristics such as size and shape, the vegetation in and around the river, and the presence of structures in and adjacent to the waterway all affect the level of water in the waterway (Panel and Garrett, 2011). Watershed changes that increase the size of floods and frequency of flooding, such as deforestation, agriculture and urbanisation, are major contributors of stream bank erosion (Georgia Soil and Water Conservation Commission, 2000).

4. Impacts of Floods in Sri Lanka

Floods are of more common occurrence in Sri Lanka than the other natural disasters because many of the rivers in the country are prone to causing floods. Sri Lanka's hydrological resources consist of a network of river basins with varying degrees of water availability. There are 103 distinct river basins which cover about 58,550 km², which is 90% of the total land mass. The increase in population and subsequent need for land have forced more and more people to live and work in these vulnerable areas, thereby intensifying the risk to life and property in the event of major floods.

The wet zone in Sri Lanka is likely to receive more rainfall due to the effects of climate change, which is proved by the erratic rainfall patterns during the southwest monsoon in the recent years (Dissanayake et al., 2018). Over the past 20 years, recurring floods in the country have had an impact on almost all districts of the country. Districts of Kegalle, Ratnapura, Kalutara, Colombo, Gampaha and Galle are subject to floods on account of Southwest monsoon rains, while Ampara, Trincomalee, Badulla, Polonnaruwa, Batticaloa, Matale and Monaragala suffer from the Northeast monsoon rains (Ghatak et al., 2012). A marked increase in the number of floods that affected people can be noted in 2008, 2011, 2014 and 2017 as several flood events were recorded within the same year. While loss of life remains significant, a reduction in related numbers has been evidenced throughout the period.

Floods in Sri Lanka can be classified in different ways. The following is one of the more common and useful ways of classifying floods, based on the source and the nature of flooding (Disaster Management Center, 2004).

- i. Riverine floods
- ii. Flash floods
- iii. Localized floods
- iv. Floods created by reservoir operation

4.1 Main reasons of flood occurrence in Sri Lanka

In Sri Lanka, the occurrence of recent floods is related to the heavy rainfall and concentration of sediment in marshy and other lowlands. Rainfall in Sri Lanka has multiple origins. Monsoonal, convectional and depressional rain accounts for a major share of the annual rainfall. The mean annual rainfall varies from under 900 mm in the driest parts (southeastern and northwestern) to over 5,000 mm in the wettest parts; western slopes of the central highlands of the country (Department of Meteorology, 2018).

Deforestation, improper land use and the absence of scientific soil conservation practices are identified as the major factors contributing to floods in Sri Lanka. Together with global phenomena such as climate change which has increased rainfall intensities, urbanisation accompanied by insufficient infrastructural facilities such as drainage systems trigger urban floods (Dissanayake et al., 2018).

Unplanned land reclamation for housing schemes, industries and agriculture has also been responsible for recent floods in the coastal lowlands during the heavy showers. Sediments from landslides and soil erosion also supply fine materials to the lowlands and are responsible for floods. Such concentrations of sediments are a direct result of deforestation, encroachment of forest reservation and gem mining in the basins (Katupotha, 1989).

5. Integrated Watershed Management to Reduce Flood Risk

Watershed management is the process of organising and guiding land, water, and other natural resources used in a watershed to provide the appropriate goods and services while mitigating the impact on the soil and watershed resources (Wang et al., 2016). It involves socioeconomic, human-institutional, and biophysical inter-relationships among soil, water, and land use and the connection between upland and downstream areas (Ffolliott et al. 2002).

Integrated flood management combines land and water resource development in a river basin within the context of integrated water resource management with a view of maximising efficient use of floodplains and minimising loss of life and property (Flood Green Guide, 2016). However, in order for better assessment of flood related risk and options available to manage that risk, it is important to know the location of the area of interest within the watershed. Multiple and varied factors within a watershed affect the potential for flood risk and the options for putting together a flood management strategy (Flood Green Guide, 2016).

Integrated flood management embraces principles embedded in water resource management and those of risk management. This integration embraces land and water resources development in a river basin, use of floodplains and the reduction of loss of life due to flooding. There is a combination of policies and regulatory, financial and physical measures in trying to cope with floods, and at the same time recognise that floods cannot be fully controlled (Water Meteorological Organization and Global Water Partnership, 2004).

5.1 Use of bioengineering methods for flood risk management

Bioengineering integrates living plants and structural and manufactured materials together in mutually reinforcing complimentary roles (Allen and Leech, 1997). Such techniques used in combination with civil and social engineering measures can considerably reduce the overall cost of landslide mitigation (Singh, 2010). In terms of flash flood mitigation, it refers to the combination of biological, mechanical, and ecological concepts to reduce or control erosion, protect soil, and stabilize slopes using vegetation or a combination of vegetation and construction materials.

Bamboo fencing, brush mattresses, live crib walls, live fascines, wattle fences, live stacking, coir mats, coir nettings, coir rolls, turf reinforcement mat and pre-vegetated blanket are the most common and popular methods used under bioengineering methods. This technology integrates sound engineering practices with ecological principles. It uses living plant material in combination with non-living structural elements and manufactured products. Therefore, it brings biological, ecological, and engineering concepts together to produce living, functioning systems for erosion and flood control, habitat, and aesthetic enhancement, water quality improvement.

5.2 Advantages of soil bioengineering methods

There are several benefits and advantages of soil bioengineering methods. These methods usually require less heavy equipment excavation which yields less cost and less negative impacts. In addition, limiting crews to one entrance and exit route will cause less soil disturbance to the site and adjoining areas. Erosion areas often begin small and eventually expand to a size requiring costly traditional engineering solutions. Installing soil bioengineered systems while the site problem is small will provide economic savings and minimise potential impacts to the road and adjoining resources. Use of native plant materials and seeds may provide additional savings. Costs will be limited to labor for harvesting, handling, and transport to the project site. Soil bioengineering is often useful on sensitive or steep sites where use of heavy machinery is not feasible.

These systems are initially strong and grow stronger as vegetation becomes established. Even if the plants die, roots and surface organic litter continues to play an important role during reestablishment of other plants. Once plants are established, root systems reinforce the soil mantel and remove excess moisture from the soil profile. This is often the key to long-term soil stability. Soil bioengineering provides improved landscape and habitat values (Hartwig, 2015).

6. Riparian Vegetation

A riparian area is an ecosystem situated between aquatic and upland environments that is at least periodically influenced by flooding. It is the relatively narrow strip of land along the bank of a river and differs from a flood-plain in that the latter is a more extensive valley floor subject to inundation during floods. Further, riparian systems function to reduce flood peaks, recharge groundwater, transport and trap sediments and nutrients, control water temperatures, and stabilize surrounding ecosystems (Debano and Schmidt, 1990). Riparian habitats are streamside or riverside communities (biological) continually disturbed by floods, erosion, deposition etc. (Wikramaratne and Chandrakanthi, 2005). Protection and rehabilitation of riparian vegetation is a main requirement because damages to the banks of water causes can cause severe problems that affect the environment and nearby communities.

6.1 Benefits of riparian vegetation

Healthy riparian areas have the ability to reduce sedimentation of waterways by filtering pollutants from adjacent upland areas and reducing the rate of soil loss from banks and upland areas. Riparian areas provide valuable benefits to streams such as shading, reducing stream temperatures and organic matter inputs that serve as a food source for many aquatic macro-invertebrates. Moreover, healthy riparian areas provide significant aesthetic value to residents and tourists who experience thousands of miles of riverine systems while driving transportation corridors throughout Colorado (Pusey and Arthington, 2003). Riparian areas also act as a sponge by absorbing floodwaters. The water is then slowly released over a period of time which minimizes flood damage and sustains higher base flows during late summer (Binford and Buchenau, 1993).

Properly functioning riparian areas play key roles in providing fish and wildlife habitat, preserving water quality and water supply, and providing recreational opportunities. A comprehensive assessment of criteria useful in judging riparian area condition and attributes that constitute a proper functioning condition for lotic areas should usually be developed and refined by an interagency team (Prichard and Clemmer, 1996).

7. Species Selection to Restore Watersheds and Flood Prone Areas

Establishment of degraded site restoration depends on proper selection of species, plant material procurement and handling, planting location, and establishment techniques (Hoag, 1993). It also depends

on an understanding of the location of the site on the landscape, because landscape position influences the availability of soil moisture and sunlight. Site type is a reflection of landscape position, which is a combination of the direction that a slope faces and topography. Aspect, slope steepness, and location on the slope are the primary factors to consider when selecting tree species for planting (Davis et al, 2012).

7.1 Criteria used for the selection of species

Only native species were selected for this purpose to enhance the diversification of the floral species. The considerations made in species selection for this study are given below.

- i. Conservation status
- ii. Size at maturity
- iii. Growth parameters
- iv. Suitable climate
- v. Suitable elevation
- vi. Suitable location
- vii. Use

Amarasinghe et al./ Vidyodaya Journal of Science Vol. 23 No. 01 (2020) 1-16

Table 2: Identified suitable tree species with their key characteristics.

Family	Botanical name	Common name	Conservat ion status	Tree size	Height (m)	Diameter (cm)	Climate	Elevation (m)	Suitable location	Engineering benefits	Growth rate	Use
Achariaceae	Hydnocarpus venenata	Makulu	Endemic	Large			Wet	600	Home gardens, Forest	Soil stabilisation/ Control surface runoff	Slow	Medicine/ Wood
Anacardiaceae	Campnosperma zeylanicum	Aridda	Endemic/ VU	Medium to Large		Up to 200		Up to 400		Stream/river bank stabilisation	Medium	
Anacardiaceae	Semecarpus walkeri	Badulla	Endemic/ VU	Small to Medium						Stream/river bank stabilisation	Medium	Medicine
Anacardiaceae	Nothopegia beddomei	Bala	Native	Small to Medium	Up to 12			Up to 1,100			Slow	Medicine
Anacardiaceae	Anacardium occidentale	Kaju	Introduce d	Small to Medium	Up to 14		Wet and Dry	Up to 1,000	Home gardens	Bank stabilisation	Fast	Food/ Medicine/ Source of various commodities
Anacardiaceae	Lannea coromandelica	Hik	Native/ LC	Medium	05 to 20	Up to 45	Dry	100-1,800	Home gardens, Forest, Cultivation		Medium	Food/Medicine
Anacardiaceae	Mangifera indica	Amba	Native/ DD	Medium to Large	08 to 30	100 to 120	Wet and Dry	Up to 800	Home gardens, Forest, Cultivation		Fast	Food/ Medicine/ Wood
Anacardiaceae	Mangifera zeylanica.	Etamba/ Wal amba	Endemic/ VU	Large	30	Up to 90	Wet and Dry	Up to 801	Forest	Soil stabilization, Surface runoff control	Slow	Food/ Medicine/ Source of various commodities
Anisophyllaceae	Anisophyllea cinnamomoides	Welipenna/ Weli piyana	Endemic/ VU								Slow	
Annonaceae	Annona muricata	Katu- Anoda	LC	Small	04 to 10	Up to 15	Wet	Up to 1,000	Home gardens, Forest, Cultivation		Fast	Food/ Medicine/ Pesticides
Annonaceae	Cananga odorata	Rata-Sapu/ Wana sapu	Naturalize d Exotic/ LC		03 to 30	Up to 30	Wet	Up to 1,200	Home gardens, Forest, Cultivation	Used for rainforest regeneration in Australia	Fast	Food/ Medicine
Annonaceae	Xylopia championii	Dathketiya	Endemic/ LC	Small to Medium	Up to 12						Slow	Medicine
Annonaceae	Xylopia parvifolia	Netawu/ Athu ketiya	Native/ LC	Medium to Large	Up to 25		Wet		Forest		Slow	Medicne/ Wood/ As a masticatory, chewed with betel nut
Apocynaceae	Cerbera odollam	Diya Kaduru	Native/ LC	Small to Medium	05 to 17	20 to 90	Wet	Up to 300	Forest	Stream/river bank stabilisation	Medium	Medicne/ Wood/ Fiber and Oil Source
Apocynaceae	Cerbera manghas L.	Goda kaduru	Native/ LC	Small to Medium	05 to 17	Up to 70	Wet		Forest	Stream/river bank stabilisation	Medium	Medicne/ Wood/ Fiber and Oil Source
Apocynaceae	Hunteria zeylanica	Mediya	Native/ LC	Small	Up to 15	Up to 30	Wet	Up to 350	Home gardens, Forest		Slow	Food/ Medicine/ Wood/ Latex
Apocynaceae	Pagiantha dichotoma	Divi kaduru	Native/ LC	Small			Wet	Up to 1,200	Forest	Stream/river bank stabilisation	Medium	Medicne/ Wood for dancing masks

Family	Botanical name	Common name	Conservat ion status	Tree size	Height (m)	Diameter (cm)	Climate	Elevation (m)	Suitable location	Engineering benefits	Growth rate	Use
Araceae	Phoenix pusilla	Wal indi	Native/ LC	Small	2.6 to 07		Dry	Up to 700	Home gardens, Forest		Slow	Food/ Medicine/ The leaves are used locally for making baskets, mats etc.
Araceae	Areca concinna	Lenteri puwak, Lenatheriya	Endemic/ EN				Wet		Home gardens, Forest	Bank stabilisation	Fast	Food (mainly used for chewing with betel leaf)/ Medicine
Araceae	Caryota urens	Kithul	Native/ LC	Small to Medium	12 to 20	Up to 30	Wet	Up to 2,000	Home gardens, Forest		Medium	Food/ Medicine/ Wood for ropesand rafts
Araceae	Areca catechu	Puwak	Native/ LC	Small to Medium	13 to 26	20 to 40	Wet	Up to 1,000	Home gardens, Forest, Cultivation	Bank stabilisation	Fast	Food/ Medicine
Burseraceae	Canarium zeylanicum	Dik Kekuna	Endemic/ VU	Large	25 to 30				Forest, Cultivation		Slow	Food/ Wood
Calophyllaceae	Calophyllum bracteatum	Walu Kina	Endemic/ VU	Large	20 to 30	Up to 113	Wet	50 to 915	Forest		Slow	Wood
Calophyllaceae	Calophyllum inophyllum	Domba	Native/ LC	Medium	Up to 25	Up to 50	Wet	Up to 200	Home gardens, Forest	Wind break	Medium	Food/ Medicine/ Source of materials
Calophyllaceae	Calophyllum calaba	Gurukina	Endemic/ LC	Small	Up to 10	Up to 158	Dry	Up to 620	Forest		Slow	Wood
Cannabaceae	Trema orientalis	Gadumba	Native/ LC	Medium	Up to 18	Up to 60	Wet	Up to 2,500	Home gardens, Forest, Cultivation	Shade for other crops (coffee), Stabilisation of flood-damaged riverbanks, Improve soil quality, Construction	Fast	Food/ Medicine/ other commodities like ropes, paper etc.
Celastraceae	Kokoona zeylanica	Kokun	Endemic/ EN	Very Large	20 to 35		Wet	Up to 1,200	Forest		Slow	Medicine/ Wood/ Oil
Clusiaceae	Garcinia mangostana	Mangus	Introduce d	Small to Medium	Up to 20		Wet	Up to 610	Home gardens, Cultivation		Fast	Food/ Medicine
Clusiaceae	Garcinia morella	Goraka/ Gokatu/ Kokatiya	Native/ NT	Small to Medium	Up to 20		Wet	Up to 1,200	Forest, Cultivation	Stream/river bank stabilisation	Medium	Food/ Medicine
Clusiaceae	Garcinia quaesita Pierre	Rath goraka	Endemic/ LC	Small to Medium	Up to 20	Up to 60	Wet	Up to 2,000	Home gardens, Forest, Cultivation	Stream/river bank stabilisation , Control soil erosion	Medium	Food/ Medicine
Clusiaceae	Mesua ferrea	Na	Native/ LC	Medium to Large	30 to 40	Up to 95	Wet	60-1,500	Home gardens, Forest	Shade provider	Slow	Medicine/ Wood
Clusiaceae	Mesua thwaitesii	Diya na	Endemic/ LC	Medium to Large	Up to 30	7.5 to 11.5	Wet	Up to 1,100	Home gardens, Forest		Slow	
Dilleniaceae	Dillenia indica	Hondapara/ Wampara	Native/ LC	Medium to Large	Up to 30		Wet	Up to 1,000	Forest	Stream/river bank stabilization	Fast	Medicine

Family	Botanical name	Common name	Conservat ion status	Tree size	Height (m)	Diameter (cm)	Climate	Elevation (m)	Suitable location	Engineering benefits	Growth rate	Use
Dilleniaceae	Dillenia retusa	Godapara	Endemic/ LC	Small to Medium	Up to 20		Wet	Up to 500	Forest	Stream/river bank stabilization	Fast	Medicine
Dilleniaceae	Dillenia triquetra	Diya para		Small to Medium	Up to 20		Wet	Up to 1,000	Forest	Stream/river bank stabilization	Fast	Medicine
Dipterocacarpace ae	Dipterocarpus zeylanicus	Hora	Endemic/ EN	Large	Up to 40		Wet	Up to 900	Home gardens, Forest	Construction	Medium	Medicine/ Wood
Dipterocacarpace ae	Dipterocarpus hispidus	Bu hora	Endemic/ CR	Very Large			Wet		Forest		Slow	Wood/ Resin
Dipterocacarpace ae	Shorea dyeri	Yakahalu	Endemic/ EN	Very Large					Forest		Slow	Wood
Dipterocacarpace ae	Vateria copallifera	Hal	Endemic/ EN	Very Large	Up to 40			Up to 700	Forest		Slow	
Ebenaceae	Diospyros insignis	Porawa mara, Wal mediriya		Very Large							Slow	Wood
Euphorbiaceae	Chaetocarpus castanocarpus	Hedawaka	Endemic/ LC		Up to 45	Up to 78			Forest		Slow	Wood
Euphorbiaceae	Macaranga peltata	Kenda/ Path kenda	Native/	Small	Up to 15			Up to 1,000	Home gardens, Forest	Soil improver	Fast	Medicine/ Wood
Euphorbiaceae	Mallotus tetracoccus	Bu-kenda			Up to 20			Up to 350	Forest	Soil improver	Fast	
Euphorbiaceae	Aleurites moluccana	Thel kekuna/ Rata kekuna	Naturalize d Exotic/ LC		Up to 20	Up to 70	Wet and Dry	Up to 300	Home gardens, Forest, Cultivation	Used in reforestation projects	Medium	Food/ Medicine
Euphorbiaceae	Aporusa lanceolata	Heen kebella/ Veli mediya	Endemic/ VU		Up to 08			Up to 900			Slow	
Euphorbiaceae	Elaeocarpus serratus L.	Weralu	Native / LC		Up to 18			Up to 900	Home gardens, Forest, Cultivation		Slow	Food/ Medicine
Euphorbiaceae	Macaranga digyna	Gal ota/ Ota	Endemic/ NT	Small						Stream/river bank stabilization	Medium	
Euphorbiaceae	Margaritaria cyanospermus	Geri atta/ Sudu liyan	Endemic/								Medium	
Euphorbiaceae	Phyllanthus stellatus/ Glochidion stellatum (Syn.)	Kirilla/Olu peliya	Endemic/								Medium	
Euphorbiaceae	Mallotus fuscescens	Diyathora	Endemic/ VU				Wet	Up to 500	Forest		Fast	
Fabaceae	Saraca asoca	Ashoka/ Diya rathambala	Native/ VU	Small	Up to 10	Up to 10	Wet	Up to 750	Home gardens, Forest, Cultivation		Medium	Medicine

Family	Botanical name	Common name	Conservat ion status	Tree size	Height (m)	Diameter (cm)	Climate	Elevation (m)	Suitable location	Engineering benefits	Growth rate	Use
Fabaceae	Adenanthera pavonina	Madatiya	Native/ LC	Large	06 to 20	Up to 45		Up to 400	Home gardens, Forest, Cultivation	Land reclamation, Re- establish forests	Fast	Food/ Medicine/ Wood
Fabaceae	Pericopsis mooniana	Nadun	Native/ VU	Medium to Large	Up to 40	80 to 100		Up to 350	Home gardens, Forest, Cultivation	Construction	Slow	Medicine/ Wood
Fabaceae	Cynometra zeylanica	Gal mandora	Endemic/ NT		Up to 25						Medium	Medicine
Lauraceae	Litsea longifolia	Rat-Keliya	Endemic/ VU					Up to 1,300			Slow	Medicine
Lauraceae	Cryptocarya wightiana	Gulu-mora	Native/ VU		Up to 18						Medium	
Lauraceae	Persea macrantha	Ululu	Native		Up to 30						Slow	Medicine
Lecythidaceae	Barringtonia racemosa	Goda Midella	Native/ LC	Small	Up to 20		Wet	Up to 600	Forest		Slow	Medicine/ Wood
Lythraceae	Lagerstroemia speciosa	Murutha			Up to 21		Wet	Up to 300	Forest	Construction	Slow	Medicine
Malvaceae	Cullenia ceylanica / Durio ceylanicus (Syn.)	Katuboda	Endemic/ VU	Large	Up to 40			Up to 1,500	Forest		Slow	Wood
Meliaceae	Melia azedarach	Lunumidell a/ Kiri- kohomba	Native/	Large	Up to 45		Wet/ Dry	Up to 1,800	Home gardens, Forest, Cultivation	Forest establishment	Fast	Food/ Medicine/ Wood
Moraceae	Ficus hispida	Kota dimbula	Native/ LC		Up to 17	Up to 25	Wet	500 to 1,100	Forest		Slow	Food/ Medicine
Moraceae	Ficus callosa	Gonna	Native/		25 to 45	25 to 35		600 to 800	Forest		Slow	Food/ Wood
Moraceae	Ficus tinctoria	Gas netol/ Wal ehetu/ Gas-aguna	Native/ LC	Large	Up to 25	Up to 300		Up to 500	Forest		Slow	Food/ Medicine/ Wood/ Dye
Moraceae	Ficus exasperata	Sevan mediya/ Bu thediya	Native/ LC	Small to Medium	Up to 25	Up to 50			Home gardens, Forest	Shade for other crops (coffee, cocoa)	Slow	Food/ Medicine
Moraceae	Artocarpus nobilis	Bedi del/ Wal del	Endemic/ VU		Up to 25				Home gardens, Forest	Runoff control	Slow	
Moraceae	Artocarpus heterophyllus	Kos	Native/		Up to 25	Up to 200		450 to 1,200	Home gardens, Forest, Cultivation	Construction	Medium	Food/ Medicine/ Wood
Moraceae	Artocarpus incisus	Del/ Rata del	Native/						Home gardens, Forest, Cultivation	Runoff control	Fast	Food/ Medicine
Moraceae	Ficus racemosa	Attikka	Native/ LC		Up to 30	36 to 90	Wet	100 to 1,700	Home gardens, Forest, Cultivation	Shade for other crop s (coffee), Slope/gully/ river bank stabilization	Slow	Food/ Medicine/ Wood/ Latex

Family	Botanical name	Common name	Conservat ion status	Tree size	Height (m)	Diameter (cm)	Climate	Elevation (m)	Suitable location	Engineering benefits	Growth rate	Use
Myristicaceae	Horsfieldia irya	Irya	Native/ LC		Up to 47	Up to 112	Wet	Up to 450	Home gardens, Forest	Bank stabilization	Slow	Food/ Wood
Myristicaceae	Horsfieldia iryaghedhi	Ruk/ Thalan	Endemic/ CR		5 to 25	Up to 50	Wet	Up to 500	Home gardens, Forest	Bank stabilization	Slow	Wood/ Essental oil
Myrtaceae	Syzygium nervosum/ Cleistocalyx operculatus (Syn.)	Bata-damba	Endemic/ LC							Bank stabilization	Slow	Wood
Myrtaceae	Syzygium gardneri	Damba, Panu pera	Native/		Up to 30						Slow	
Myrtaceae	Syzygium makul	Alu-bo	Native/ VU	Large					Forest		Slow	
Myrtaceae	Syzygium rubicundum	Maha Kuretiye/ Pini baru/ Karaw	Native/	Large	Up to 40	Up to 200					Slow	
Phyllanthaceae	Aporosa cardiosperma	Maput- Kebella			Up to 18			Up to 600	Forest		Slow	
Phyllanthaceae	Bridelia moonii	Pat-Kela	Endemic/ VU		Up to 15		Wet	Up to 700	Forest	Construction	Medium	Wood
Rhizophoraceae	Carallia brachiata	Dawata	Native/ NT		Up to 50			Up to 1,500	Home gardens, Forest	Used in reforestation and reclamation schemes on degraded and heavily polluted land	Fast	Food/ Medicine/ Wood
Rubiaceae	Nauclea orientalis	Bak mee	Native/ LC	Medium	Up to 30	Up to 100	Wet/ Dry	Up to 500	Home gardens, Forest	Control soil erosion, Shade tree, Bank stabilisation	Slow	Food/ Medicine/ Wood
Rubiaceae	Psydrax dicoccos	Panduru/ Maha seru/ Gal karanda	Native/ VU		Up to 15		Wet	100 to 600	Forest		Medium	Wood
Rubiaceae	Mitragyna tubulosa	Helamba	Native/	Small			Wet		Forest	Control soil erosion	Slow	Medicine
Rubiaceae	Acronychia pedunculata	Ankenda	Native/ LC	Small	Up to 28			Up to 900	Home gardens, Forest	Soil erosion control	Slow	Food/ Medicine/ Wood/ Cosmetic
Rubiaceae	Melicope lunu- ankenda	Lunu- Ankenda	Native/ LC	Small	Up to 30			Up to 2,200	Forest	Soil erosion control	Slow	Food/ Medicine/ Wood
Rubiaceae	Wendlandia bicuspidata	Rawan idala/ Agana/ Rawana idala	Endemic/								Slow	Medicine

Family	Botanical name	Common name	Conservat ion status	Tree size	Height (m)	Diameter (cm)	Climate	Elevation (m)	Suitable location	Engineering benefits	Growth rate	Use
Sapindaceae	Dimocarpus longan	Mora/ Rasa mora/ Peni mora	Native/ NT	Medium to Large	Up to 30	Up to 100			Home gardens, Forest, Cultivation		Slow	Food/ Medicine/ Wood
Sapindaceae	Pometia pinnata	Naimbul/ Bulumora/ Gal mora	Native/ LC	Large	Up to 40	100 to 140		Up to 500	Home gardens, Forest, Cultivation		Slow	Food/ Medicine/ Wood/ Gum
Sapotaceae	Madhuca longifolia	Mee	Native		Up to 20				Home gardens, Forest	Soil erosion control	Slow	Food/ Medicine/ Wood/ Oil
Sapotaceae	Mimusops elengi	Munamal	Native/ LC	Large	Up to 40	Up to 100	Wet	Up to 800	Home gardens, Forest, Cultivation		Slow	Food/ Medicine/ Wood/ Oil
Simaroubacea	Quassia indica	Samadara	Native	Small	5 to 12		Wet				Slow	
Symplocaceae	Symplocos cochinchinensis	Bobu	Native	Small	Up to 12	Up to 50			Home gardens, Forest		Slow	
Verbenaceae	Vitex altissima	Milla/ Kaha milla/ Niyan milla/ Sapu milla	Native	large	Up to 33	up to 170		Up to 1,200	Home gardens, Forest, Cultivation	Construction	Medium	Medicine/ Wood

Amarasinghe et al./ Vidyodaya Journal of Science Vol. 23 No. 01 (2020) 1-16

Table 3: Identified suitable shrub species with their key characteristics.

Family	Botanical name	Common name	Taxonomic status	Tree size	Height (m)	Diameter (cm)	Climate	Elevation (m)	Suitable location	Engineering benefits	Growth rate	Use
Apocynaceae	Tabernaemontana divaricata	Wathusudda	Only under cultivation						Home gardens		Fast	Medicine
Aristolochiaceae	Thottea siliquosa	Thapasara Bulath	Native								Fast	Medicine
Asteraceae	Tithonia diversifolia	Naththasuriya/ Wal suriyakantha/ Titta/ Padimella			02 to 03		Wet/ Dry		Home gardens, Cultivation		Slow	Medicine
Connaraceae	Connarus semidecandrus/ Connarus monocarpus (Syn.)	Radaliya	Native/ LC		Up to 05						Medium	Medicine
Dilleniaceae	Schumacheria castaneaefolia	Kekiri-Wara	Endemic/ LC	Large	Up to 08		Wet	Up to 750	Home gardens, Forest	Bank stabilisation	Fast	
Euphorbiaceae	Agrostistachys indica	Dat- Wenna/Leaf litter plant	Native							Soil improvement	Medium	
Euphorbiaceae	Antidesma bunius	Kebella/ Karawala kebella	Native/ LC		Up to 08	Up to 100	Wet	Up to1,200	Home gardens, Forest, Cultivation	Forest gap succession	Medium	Food/ Medicine Wood
Euphorbiaceae	Aporosa fusiformis	Embilla	Native/ CR	Small	Up to 18						Medium	
Euphorbiaceae	Blachia umbellata	Kosatta	Native/ LC		02 to 05						Medium	
Fabaceae	Flemingia strobilifera	Hampinna/ Hampilla	Native/ LC	Small	01 to 04			200 to 1,600	Home gardens, Forest		Medium	Food/ Medicine
Fabaceae	Senna occidentalis/ Cassia occidentalis (Syn.)	Peni-Tora	Native/ LC		Up to 02			Up to 1,200	Home gardens, Forest		Fast	Food/ Medicine
Lamiaceae	Clerodendrum cordatum/ Clerodendrum infortunatum (Syn.)	Pinna/ Gas pinna	Native/ LC	Small	01 to 05				Home gardens, Forest		Fast	Food/ Medicine
Lamiaceae	Mesosphaerum suaveolen/ Hyptis suaveolens (Syn.)	Ali thala	Naturalized Exotic		Up to 2.5				Home gardens, Forest		Medium	Medicine/ Essential Oil
Lauraceae	Cinnamomum cassia	Dawul- Kurundu/ Kudu dawula	Native/ LC	Large	Up to 20		Wet	Up to 500	Home gardens, Forest	Erosion control, Bank stabilisation	Slow	Medicine/ Essential Oil
Lauraceae	Cinnamomum dubium	Wal kurundu/ Sewel kurundu	Endemic/ LC	Small					Home gardens, Forest	Erosion control, Bank stabilization	Medium	Medicine/ Essential Oil

Family	Botanical name	Common name	Taxonomic status	Tree size	Height (m)	Diameter (cm)	Climate	Elevation (m)	Suitable location	Engineering benefits	Growth rate	Use
Lauraceae	Cinnamomum verum	Kurundu	Native/ VU	Moderate to Large	Up to 15				Home gardens, Forest, Cultivation	Erosion control, Bank stabilization	Fast	Food/ Medicine/ Wood/ Essential Oil
Malvaceae	Microcos paniculata	Kohu-kirilla	Native/ LC	Moderate to Large	Up to 20	Up to 50			Forest	Erosion control, Bank stabilization	Slow	Food/ Medicine/ Wood/ Source of fibre
Malvaceae	Grewia carpinifolia	Wel-mediya/ Wel keliya	Native/ LC		1.5 to 03						Medium	Food/ Medicine
Melastomataceae	Memecylon umbellatum	Kora-Kaha	Native	Small	Up to15		Dry		Home gardens, Forest		Medium	Food/ Medicine/ Wood/ Source of material
Melastomataceae	Osbeckia aspera	Bowitiya	Native						Home gardens, Forest	Erosion control, Bank stabilization	Fast	
Melastomataceae	Osbeckia octandra	Heen-bovitiya	Endemic	Small	Up to 05				Home gardens, Forest	Erosion control, Bank stabilization	Fast	Medicine
Myristicaceae	Ardisia missionis	Gambi	Native					Up to ,1200			Medium	
Myrtaceae	Syzygium caryophyllatum	Dan/ Heen dan	Native/ EN	Small	03 to 05		Wet	Up to 700	Home gardens, Forest	Erosion control, Bank stabilization	Slow	Food/ Medicine
Ochnaceae	Gomphia serrata	Go-kera/ Bo kera/ Kera	Native/ LC	Small	Up to 10			Up to 1,500	Home gardens, Forest		Slow	Food/ Medicine/ Wood
Ochnaceae	Olax imbricata/ Olax zeylanica (Syn)	Mella/ Malla	Native	Small			Wet		Forest	Erosion control, Bank stabilization	Medium	Food/ Medicine/ Wood
Pandanaceae	Benstonea thwaitesii/ Pandanus thwaitesii(Syn.)	Dunukeiya/ Dumukeiya	Native	Small	01 to 1.8					Hedge establishment	Slow	Food/ Fiber
Phyllanthaceae	Glochidion zeylanicum	Hunukirilla	Native/ LC		Up to 08				Forest		Slow	Medicine/ Wood
Phyllanthaceae	Breynia androgyna/ Sauropus androgynous (Syn.)	Japan batu/ Mella dumkola/ Singappuru kola	Native	Small	Up to 03			Up to 400	Home gardens, Forest, Cultivation	Hedge establishment	Fast	Food/ Medicine
Phyllanthaceae	Breynia vitis- idaea	Gas kaila	Native/ LC	Small	Up to 05			Up to 800	Forest		Medium	Medicine
Poaceae	Davidsea attenuata/ Bambusa attenuata (Syn.)	Thuththiri bata									Fast	
Poaceae	Ochlandra stridula	Bata	Endemic		Up to 05	Up to 100			Forest	Bank protection, Hedge establishment	Fast	Medicine
Rhamnaceae	Zizyphus rugosa	Maha- Eraminia	Native	Large	Up to 06			Up to 1,400	Forest		Medium	Food/ Medicine/ Wood

Family	Botanical name	Common name	Taxonomic status	Tree size	Height (m)	Diameter (cm)	Climate	Elevation (m)	Suitable location	Engineering benefits	Growth rate	Use
Rubiaceae	Ixora chinensis/ Ixora coccinea (Syn.)	Rathmal/ Rathambala		Small	Up to 03			Up to 600	Home gardens, Forest	Hedge establishment	Fast	Medicine
Rubiaceae	Pavetta indica	Pavatta	Native/ LC	Small	Up to 04			Up to 1,200	Home gardens, Forest		Fast	Food/ Medicine
Rubiaceae	Mussaenda frondosa	Wel- Butsarana/ Mussanda/ Mus wenna	Native		Up to 03			Up to 1,200	Home gardens, Forest		Fast	Food/ Medicine
Rubiaceae	Gaertnera vaginans	Pera tambala	Native/ LC		Up to 15			Up to 1,000	Home gardens, Forest		Medium	None
Sapindaceae	Allophylus cobbe	Kobbe/ Bu kobbe	Native/	Small	Up to 25	Up to 04	Wet	Up to 1,500	Forest		Medium	Food/ Medicine
Simaroubacea	Brucea javanica	Titta- Kohomba/ Kaputu gedi	Native/ LC	Small	Up to 10			Up to 900	Forest		Medium	Medicine/ Insecticide
Vitaceae	Leea indica	Gurulla / Burulla	Native/ LC	Small	Up to 10	Up to 19		Up to 1,200	Home gardens, Forest, cultivation		Medium	Food/ Medicine
Zingiberaceae	Alpinia nigra	Alu-gas/ Kelaniya/ Alan	LC		Up to 03				Home gardens, Forest		Slow	Food/ Medicine

References

- Allen, H.H. and Leech, J.R., 1997. Bioengineering for Streambank Erosion Control. Report 1-Guidelines (No. WES-TR-EL-97-8). Army Engineer Waterways Experiment Station Vicksburg MS, USA.
- Binford, M.W. and Buchenau, M.J., 1993. Riparian greenways and water resources. *Ecology of Greenways*, 69-104.
- Davis, V., Burger, J.A., Rathfon, R. and Zipper, C.E., 2017. Selecting tree species for reforestation of Appalachian mined lands. In: Adams, The Forestry Reclamation Approach: guide to successful reforestation of mined lands. Department of Agriculture, Forest Service, Northern Research Station, 1-10.
- Debano, L.F. and Schmidt, L.J., 1990. Potential for enhancing riparian habitats in the Southwestern United States with watershed practices. *Forest Ecology and Management*, 33:385-403.
- Disaster Management Center, 2004. Hazard profile of Sri Lanka. UNDP, Sri Lanka.
- Dissanayake, P., Hettiarachchi, S. and Siriwardana, C. 2018. Increase in disaster risk due to inefficient environmental management, land use policies and relocation policies: Case studies from Sri Lanka. *Procedia Engineering*, 212:1326-1333.
- Douben, K.J., 2006. Characteristics of river floods and flooding: a global overview: 1985-2003. *Irrigation and Drainage*, 55:9-21.
- Farooq, S., 2008. Monitoring urban development and environmental degradation of Aligarh city using remote sensing and GIS. In: Proc. All India Seminar on Advances in Environmental Science and Technology, Feb 15-16, 2008 (Aligarh), pp. 319-325.
- Ffolliott, P.F., Baker, M.B., Edminster, C.B., Dillon, M.C. and Kora, K.L., 2002. Land stewardship through watershed management, perspective for 21st Century. Kluwer Academic/Plenum Publishers, New York, USA.
- Flood Green Guide (Natural and nature-based flood management: a green guide), 2016. World Wildlife Fund, USA.
- Georgia Soil and Water Conservation Commission, 2000. *Guideline for stream bank restoration*. U.S. Environmental Protection Agency, USA.
- Ghatak, M., Kamal, A. and Mishra, O.P., 2012. SAARC workshop on flood risk management in South Asia, SAARC Disaster Management Center, New Delhi, India.
- Hartwig, 2015. Washington state department of transportation. http://www.wsdot.wa.gov/Design/ Roadside/SoilBioengineering.htm#Benefits. Accessed 06 January 2019.
- Hoag, C.J., 1993. Riparian restoration. TandD Publication, USDA, USA.
- Katupotha, J., 2015. Geomorphic surfaces of the river basins in the western and southern parts of Sri Lanka. Natural Resources, Energy and Science Authority of Sri Lanka.
- Prichard, D., Clemmer, P, 1996. *Riparian area management: using aerial photographs to assess proper functioning condition of riparian-wetland areas*, US Bureau of Land Management, National Applied Resource Sciences Center, USA.
- Pusey, B.J. and Arthington, A.H., 2003. Importance of the riparian zone to the conservation and management of freshwater fish: a review. *Marine and Freshwater Research*, 54:1-16.
- Singh, A.K., 2010. Bioengineering techniques of slope stabilization and landslide mitigation. *Disaster Prevention and Management*, 19:384-397.
- US Geology Survey, 2016. Kansas Water Science Center. http://ks.water.usgs.gov/flood. Accessed 14 November 2018.
- Wang, G., Mang, S., Cai1, H., Liu, S., Zhang, Z., Wang, L. and Innes, J.L., 2016. Integrated watershed management: Evolution, development and emerging trends. *Journal of Forestry Research*, 27:967-994.
- Water Meteorological Organization and Global Water Partnership, 2004, Intergrated Flood Management, Sri Lanka Water Meteorological Organization, Sri Lanka.
- Wickramaratne, S.N. and Chandrakanthi, M., 2005. *Riparian Vegetation of the Wet Zone of Sri Lanka*. Proceedings of the Peradeniya University Research Sessions, Sri Lanka. Vol. 10.