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Abstract 

Machine learning (ML) and artificial intelligence (AI) have become specialists in different 

areas of chemistry. These technologies help to change the standard approaches to data analysis and 

molecular design along with the properties forecast. This review describes the interesting 

applications and increasing potential of AI and ML, specifically in drug discovery, chemical 

synthesis, material science, and computational chemistry. Computationally, the focus was on the 

application of AI algorithms to quantum chemistry simulations to predict properties of elements 

within a molecule, or possible reactions of molecules at a rate that would not have been possible 

manually. Moreover, AI-driven robotic synthesis platforms and experimental techniques have 

become less labor-intensive. The methods used for the identification of new chemical structures have 

improved in terms of speed. The benefits and the limitations of integrating AI, as well as the 

opportunities, are discussed in detail. In this review, it is also reiterated that there are risks that come 

with the integration of ML in chemistry and how interdisciplinary collaboration and data sharing are 

crucial to advancing in this field. In a single summary, this review demonstrates how the use of AI 

and ML can and will expand the horizons of chemical science and discovery. 

 

Keywords: Artificial Intelligence, Machine Learning, Drug Discovery, Chemical Synthesis, 

Materials Science, Computational Chemistry. 
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Introduction 

Artificial Intelligence and Machine Learning are rapidly developing tools that have become 

the core of numerous fundamental and technical disciplines, among which chemistry is one of the 

most important and promising disciplines (Cun et al., 2015). The combination of these two 

approaches has stimulated abilities for unprecedented innovation. These methods can also be applied 

in data mining, molecular simulations, and property estimation, significantly influencing drug 

design, materials science, and chemical manufacturing (Goh et al., 2017). Thus, this introduction 

aims to familiarize the reader with the importance of AI and ML in revolutionizing chemistry, as 

well as their underlying concepts, methods, and applications (Schneider et al., 2018). 

The history of AI can be traced back to the mid-twentieth century, with prominent figures 

such as Alan Turing and John McCarthy (Butler et al., 2018). However, significant progress in the 

field was not achieved until recent decades, driven by advancements in computational power, 

algorithms, and data availability (Coley et al., 2019). At the same time, the growth rate of the field of 

Machine Learning, an AI subfield accelerated. Concurrently, the rapid growth of machine learning, a 

subfield of AI, has been fueled by improvements in statistical modeling, optimization techniques, 

and neural networks (Segler et al., 2017). 

Computational methods have been employed in chemistry since the advent of computers in 

the mid-twentieth century (Kuhn et al., 2013). Initially, these methods were primarily used to solve 

quantum mechanical problems to determine molecular structures and properties. Of late, the field of 

computational chemistry has broadened in line with the emergence of access to high performance 

computing and the implementation of Artificial Intelligence and Machine Learning (Lo et al., 2018). 

Today AI and ML are part of numerous aspects of chemical research, providing unparalleled 

opportunities for big data analysis as well as computer-aided molecular design and modeling (Coley 

et al., 2019).The primary applications of AI and ML in the field of chemistry are summarized in 

Table 1 (Schneider et al., 2018; Noé et al., 2020; Butler et al., 2018; Schwaller et al., 2019; Korolev 

et al., 2020; Vamathevan et al., 2019; Wu et al., 2018; Mattei et al., 2019; Goh et al., 2017; 

Pfrommer et al., 2018). However, this review covers only the four main aspects (drug discovery, 

synthetic chemistry, material science, and computational chemistry) of AI and ML being used in 

chemistry. 

 

Table 1: Use of AI and ML in multiple fields of chemistry. 

Application Description Examples 

Drug Discovery AI and ML models are used to predict the 

biological activity of compounds, identify 

potential drug candidates, and optimize 

their properties 

Identifying new drug candidates, 

predicting drug-target interactions, 

and optimizing drug formulations. 

Molecular 

Simulation 

AI aids in simulating molecular dynamics, 

predicting molecular structures, and 

understanding complex chemical reactions 

Simulating protein folding, predicting 

molecular behavior, and exploring 

reaction mechanisms. 

Material Science AI helps in discovering and designing new 

materials with desired properties by 

analyzing vast datasets and predicting 

material behavior. 

Developing new catalysts, designing 

high-performance materials, and 

optimizing material properties. 

Chemical 

Synthesis 

ML models predict the outcomes of 

chemical reactions and suggest optimal 

synthesis pathways for target molecules. 

Predicting reaction products, 

optimizing synthesis routes, and 

automating synthetic chemistry. 

Spectroscopy 

Analysis 

AI analyzes spectral data (e.g., NMR, IR, 

MS) to identify compounds and their 

structures, and to monitor reaction 

progress. 

Automated interpretation of NMR 

spectra, identifying compounds from 

mass spectrometry data. 
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Cheminformatics AI-driven analysis of chemical data (e.g., 

databases of compounds and reactions) to 

find patterns and make predictions. 

Predicting chemical properties, 

finding similar compounds, and 

virtual screening of chemical 

libraries. 

Toxicology and 

Safety 

AI models predict the toxicity and 

environmental impact of chemical 

substances, helping to ensure safety and 

regulatory compliance. 

Predicting adverse effects of 

chemicals, environmental impact 

assessment, and regulatory 

toxicology. 

Formulation 

Science 

AI optimizes the formulation of chemical 

products, such as pharmaceuticals, 

agrochemicals, and consumer goods. 

Optimizing drug formulations, 

developing stable agrochemical 

mixtures, and improving product 

performance. 

Analytical 

Chemistry 

AI enhances the analysis and interpretation 

of complex data from analytical 

instruments, improving accuracy and 

efficiency. 

Automated data analysis from 

chromatography, improving detection 

limits in analytical techniques. 

Process 

Optimization 

AI optimizes chemical processes in 

industrial settings, improving yield, 

efficiency, and sustainability. 

Optimizing reaction conditions in 

manufacturing, reducing waste, and 

improving energy efficiency. 

 

Fundamental Concepts and Methodologies 

The core to the processes of AI and ML is the ability to learn from the data, to make 

decisions or predictions (Hansen et al., 2009). ML algorithms can be preliminarily distinguished 

according to the type of learning: supervised, unsupervised, or reinforcement learning with different 

learning goals and approaches (Rupp et al., 2012). Furthermore, reinforcement learning algorithms 

have been used to enhance reaction conditions, and to generate new molecules with desired 

properties through a process of trial and error in terms of chemical space (Coley et al., 2019). The 

methodology for chemical synthesis using AI & ML involves several steps that can be represented in 

a flow diagram (Scheme 1) (Schwaller et al., 2019). 

 

 
 

Scheme 1. The common methodology of using AI & ML in different fields of chemistry. 

  

mailto:shyamal.m68@gmail.com


Mondal/Current Scientia 27 No.02 (2024) 68-85 

 

*Correspondence:shyamal.m68@gmail.com 
© University of Sri Jayewardenepura 

71 
 

 

Applications in Drug Discovery 

The implementation of ML approaches in drug discovery has fast-forwarded the discovery of 

novel therapeutic assets based on the structure-toxicity profile analysis of large chemical data sets 

(Yang et al., 2019). Pharmaceuticals remain one of the largest domains where AI and ML have 

applied their presence and disrupted the conventional process of drug discovery. Traditionally, drug 

discovery was a process prolonged in time and rather expensive, involving a high level of failures 

and growing costs. Still, AI and ML can save the time to get through several steps of the drug 

discovery process, including target identification, lead optimization, clinical trial design, and post-

marketing surveillance (Schneider et al., 2018). 

Virtual screening and quantizing are amongst the most active fields in the engagements of AI 

in the drug discovery. Tools such asAlphaFold (Jumper et al., 2021), DeepChem (Wu et al., 2018), 

AutoDock Vina (Trott et al., 2010), REINVENT (Blaschke et al., 2020), ADMETlab (Dong et al., 

2018), MOSES (Polykovskiy  et al., 2020) are used to learn models for the interaction of drugs and 

targets based on diverse datasets of chemical compounds and related biological activities (Lo et al., 

2018). These models can then be used with success to rationally select compounds for experimental 

testing based on their predicted binding affinities and selectivity as well as pharmocokinetic 

properties. 

In addition, AI, and ML help in the refinement of lead compounds by evaluating the 

structure-activity relationship (SAR) rationally as well as molecular designing. Using ML algorithms 

and mathematical equations, the large datasets of chemical structures along with the bioactivity 

profiles can be used to determine several critical molecular features. These mathematical approaches 

can help in continuous refinement through successive rounds of modification of biomolecules to 

improve their potency, selectivity, and safety (Jumper et al., 2021; Bombarelli et al., 2018; 

Ramsundar et al., 2019). 

 

Molecules are represented in forms suitable for deep learning models: 

1.Molecular Representation 

i) SMILES Strings: Linear notation converted into embeddings for sequence models. 

ii) Molecular Graphs: 

Nodes (v) represent atoms. 

Edges (e) represent bonds. 

Graph Representation 

A molecule as a graph  

𝐺 = (𝑉, 𝐸),  

V: Set of atoms. 

E: Set of bonds. 

 

2. Feature Extraction with Graph Neural Networks (GNNs) 

i) Message Passing Framework 

For a node v in a graph G feature updates occur iteratively: 

ℎ𝑣
(𝑡+1)

= 𝑓(ℎ𝑣
(𝑡)

, {ℎ𝑢
(𝑡)

: 𝑢 ∈ 𝒩(𝑣)}, 𝑒𝑢𝑣) 

𝑒𝑢𝑣 ∶ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑜𝑓𝑒𝑑𝑔𝑒(𝑢, 𝑣) 

𝒩(𝑣): Neighborhood of node (𝑣). 

ℎ𝑣
(𝑡)

: Feature vector of node 𝑣 at iteration t. 

ii) Readout Function 

Aggregates node features to represent the entire graph: 

ℎ𝐺 = READOUT({ℎ𝑣
(𝑇)

|𝑣 ∈ 𝐺}) 

ℎ𝐺 is used for property prediction. 
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3. Property Prediction (Regression/Classification) 

i) Regression Model 

Predict molecular properties like binding affinity (y): 

�̂� = 𝑓(ℎ𝐺; θ) 

where f is a neural network with parameters θ 

ii) Classification Model 

For binary outcomes (e.g., active/inactive), the output probability is: 

�̂� = σ(𝑓(ℎ𝐺 ; θ)) 

where σ(𝑥) =
1

1+𝑒−𝑥  is the sigmoid activation function. 

iii) Loss Functions 

Mean Squared Error (MSE) for regression: 

ℒME =
1

𝑁
∑(𝑦�̂� − 𝑦𝑖)2

𝑁

𝑖=1

 

Binary Cross-Entropy for classification: 

ℒBE = −
1

𝑁
∑[𝑦𝑖 log(𝑦�̂�) + (1 − 𝑦𝑖) log(1 − 𝑦�̂�)]

𝑁

𝑖=1

 

4. Molecular Generation with Variational Autoencoders (VAEs) 

VAEs generate novel molecules by learning a latent representation. 

i) Encoding: Input molecule x is encoded into a latent vector z: 

𝑞ϕ(𝑧|𝑥) = 𝒩 (𝑧; μϕ(𝑥), σϕ
2 (𝑥)) 

where  are encoder parameters. 

ii) Decoding: The decoder generates a molecule from z: 

𝑝θ(𝑥|𝑧) 

where θ are decoder parameters. 

iii) Loss Function: Combines reconstruction and regularization: 

ℒ = ℒrcn + βℒK 

Reconstruction Loss:  

ℒrcn = −𝐸𝑞ϕ(𝑧|𝑥)[log 𝑝θ (𝑥|𝑧)] 

KL Divergence Regularization:  

ℒK = 𝐷KL[𝑞ϕ(𝑧|𝑥)|𝑝(𝑧)] 

 

5. Drug-Target Interaction Prediction 

i) Matrix Factorization 

Predict drug-target binding affinity (yij) by factorizing drug and target embeddings: 

𝑦𝑖�̂� = 𝑢
𝑖

⊤𝑣𝑗
 

ui: Drug embedding. 

Vj: Target embedding. 

ii) Deep Learning Prediction 

Using concatenated features: 

𝑦𝑖�̂� = 𝑓([𝑢𝑖 , 𝑣𝑗]; θ) 

where f is a deep neural network. 

 

6. Optimization with Reinforcement Learning (RL) 

R optimizes molecular properties using a reward function R. 

i) Q-Learning 
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For state 𝑠 (current molecule) and action a (modification): 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + α [𝑅 + γ max
𝑎′

𝑄 (𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] 

α: Learning rate. 

γ: Discount factor. 

s′,a′: Next state and action. 

ii) Reward Function 

Defined for desired properties: 

𝑅 = 𝑓(binding affinity, toxicity) − penalty for undesired traits. 

Aside from the lead optimization, AI proximal entries significantly contribute to toxicity 

prognosis and adverse event characterization, allowing the early assessment of safety-related issues 

and furthermore, the selection of the candidates during preclinical and clinical stages (Segler et al., 

2017). In this way, ML algorithms are capable of learning chemical structure and toxicological 

properties from multitude sources of chemical, biological, and clinical data, to create a reasonable 

risk profile to guide the evaluation of risk and possible protective measures. 

The exploration of the AI and ML in drug discovery is the key enhancer of the efficient 

identification and development of brand-new safe and efficacious therapeutics, as well as the 

minimization of time and costs necessary for trial-and-error approaches. 

 

Applications in Synthetic Chemistry 

In the domain of chemical synthesis, AI and ML offer unprecedented opportunities to 

accelerate discovery, optimize processes, and reduce costs. By leveraging advanced algorithms, and 

different tools like ASKCOS (Grzybowski et al., 2018), IBM RXN (Schwaller et al., 2018), 

AiZynthFinder (Genheden et al., 2020), ChemOS (Roch et al., 2020) researchers are now able to 

navigate the complex chemical space more efficiently. 

 

i) Optimization of Reaction Conditions 

Machine learning models can analyse vast datasets of reaction outcomes to predict optimal 

conditions such as temperature, pressure, catalysts, and solvent choices; for instance, gradient 

boosting algorithms or neural networks are trained on experimental data to fine-tune these 

parameters, thus reducing the need for exhaustive experimentation (Guzik et al., 2018; Cova et al., 

2020). 

Machine learning predicts rate constants (k) using Arrhenius-type relationships: 

𝑘 = 𝐴 ⋅ 𝑒−
𝐸𝑎
𝑅𝑇 

where A is the pre-exponential factor, Ea is the activation energy, R is the gas constant, and T is the 

temperature. Ea and A can be predicted using ML models. 

 

ii) Predicting Reaction Outcomes 

When fed the information about molecular structures and the reaction conditions, the ML 

models will predict the conversion, selectivity, and potential side reactions of a chemical process 

(Schwaller et al., 2019). This predictive capability is particularly beneficial in compound multistep 

syntheses because byproducts may interfere with the synthesis procedure. Bayesian networks and 

deep learning-based models have been predicted to enhance the reaction predictability as well (Coley 

et al., 2018; Gao et al., 2020). 

Chemical reaction prediction can be modelled as: 

𝑃(𝑦|𝑋) = 𝑓(𝑋, Θ) 

where P(y∣X) is the probability of a reaction outcome y, given the input features X (e.g., reactants, 

reagents, and conditions), and f is a predictive model parameterised by Θ. 
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iii) Designing Synthesis Pathways 

The choice of synthetic strategy for the target molecules is one of the most important 

components in the design of a chemical synthesis. Previously this has been done qualitatively by 

chemists using their experience and estimations together with the concept of retrosynthetic analysis. 

This is where AI platforms including the retrosynthesis planning tools help in suggesting the 

probable pathways of synthesis just by considering the structure of a certain molecule (Segler et al., 

2018). These tools leverage pre-existing specifications concerning reactions and use random 

strategies such as the Monte Carlo tree search procedure or the graph neural network to detect 

suitable paths (Yang et al., 2020). 

Retrosynthesis can be framed as a tree-search optimization: 

Score(𝑆) = ∑ 𝑔(𝑆𝑖)

𝑛

𝑖=1

+ 𝜆 ⋅ ℎ(𝑆) 

where g(Si) evaluates the likelihood of sub-reactionsSi; h(S)is a heuristic function estimating the cost 

of synthesis paths, and λis a weighting parameter. 

 

iv) Exploration of Chemical Space 

It is impossible to conceive how vast the chemical space (the space of all possible molecules 

and their permutations) is. Machine learning and artificial intelligence allow for this idea through 

optimizing the computation in high dimensions and using a system that can catch what would not 

necessarily be naturally recognized by human instinct alone (Bombarelli et al., 2018). Among the 

generational models which propose new molecules with specific properties, VAE and GAN are the 

most suitable (Elton et al., 2019; Lengeling et al., 2018). 

Using deep generative models: 

𝑧 = 𝐸(𝑥),  𝑥′ = 𝐷(𝑧) 

where E is the encoder that maps a molecule x to a latent vector z, and D is the decoder generating 

new molecules x′from z. 

 

v) Catalyst Design and Development 

A promising method for the synthesis of new catalysts is often associated with exhaustive 

experimental testing. Machine learning improves this process much faster as it focuses on the 

correlation between the structure of the catalyst and its performance (Nandy et al., 2020). Through 

the data analysis of results obtained by computational simulations and experiments, ML models can 

propose possible catalyst candidates, which will essentially shorten the period and expenses needed 

in the catalyst design (Butler et al., 2018; Toyao et al., 2020). 

Catalyst activity (AAA) can be correlated with ML-predicted descriptors: 

𝐴 = 𝑓({𝑋𝑖}) = 𝑤1𝑋1 + 𝑤2𝑋2 + ⋯ + 𝑤𝑛𝑋𝑛 + 𝑏 

where {Xi} are features such as electronic properties or coordination numbers. 

 

vi) High-throughput Experimentation 

Molecular biology: high through-put experimentation and training of AI robots and autoionic 

have increased the rate of data production and analysis (MacLeod et al., 2020). These systems use 

machine learning to optimize the experiment design on the fly, based on feedback (Jensen et al., 

2019). As an example, self-formed synthesis machines can carry out independent reaction, assay 

results, and adjust parameters repeatedly, which effectively improves the processing capabilities of 

research channels (Huo et al., 2017). 

Screening molecular candidates in a large chemical space: 

Similarity(𝑥1, 𝑥2) =
dot(𝑥1, 𝑥2)

|𝑥1||𝑥2|
 

where x1and x2 are feature vectors for molecules, and similarity guides the screening process. 
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vii) Process Optimization and Scale-Up 

Advanced algorithms provide support in fine-tuning of process parameters for the 

reproducibility and scalability purposes (Ahneman et al., 2018). Thanks to the data obtained at the 

pilot scale, these models reveal critical constraints and possible challenges in real-world industrial 

environments and thus, ease the move towards commercial scale production (Toyao et al., 2018; 

Schwaller et al., 2020). 

Yield prediction often uses probabilistic models: 

𝑌 = 𝜎(𝑤𝑇𝑋 + 𝑏) 

where Y is the yield, X are molecular and reaction descriptors, and σ is a sigmoid activation 

function. 

 

viii) Sustainability and Green Chemistry 

The use of AI and ML for chemical synthesis also has tendencies to be in harmony with the 

principles of green chemistry (1, 2, and 6) since the generated information does not include 

generation of waste and the utilization of poisonous reagents. Such models allow chemists to spot the 

reactivity that employs renewable raw materials, less hazardous solvents, and energy-friendly 

conditions (Li et al., 2020) which, in return, enhances the formation of environmentally friendly 

processes as far as the economy is considered (Young et al., 2017; Coley et al., 2019). 

Optimizing reaction conditions for sustainability: 

minimize: EI =
𝑀waste

𝑀product

 

where EI is the environmental impact factor, predicted using ML for various conditions. 

 

Applications in Materials Science 

The use of artificial intelligence in the design of materials has led to enhanced creation of 

new materials with specific characteristics for the specific need such as energy storage and catalysis 

Gabriel et al., 2019). In material science, AI and ML tools like MatGAN (Ren et al., 2018), Materials 

Project (Jain et al., 2013), CGCNN (Xie et al., 2018), MEGNet (Chen et al., 2019) have been 

identified as state-of-the-art technologies for enhancing the rate of development and enhancement of 

new qualities of material with diverse potential uses such as energy conversion and storage, catalytic 

activity, and sensing. Conventional methods of materials discovery points back to hunch, rule of 
thumb, and finger-crossing and so, entails long and resultant cycle performances along with minimal 

mapping of the chemical space (Butler et al., 2018). Given below is a general mathematical 

framework for these applications (Scarselli et al., 2009; Duvenaud et al., 2015; Gilmer et al., 2017; 

Xu et al., 2019; Kingma et al., 2014; Higgins et al., 2017; LeCun et al., 2015; Goodfellow et al., 

2016). 

1. Representation of Materials 

Materials are represented as structured data (graphs, tensors, or descriptors): 

Graph Representation: Materials are treated as graphs G=(V,E) where: 

V represents nodes (atoms or molecular units). 

E represents edges (bonds or interactions). 

Mathematical representation of material graphs: 

𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖),  𝑉𝑖 ∈ 𝑅𝑑,  𝐸𝑖 ∈ 𝑅𝑒 

where ddd and eee are the feature dimensions for nodes and edges. 

2. Feature Encoding 

Deep learning models encode the features of a material using embedding techniques: 

Atomic Embeddings: 

ℎ𝑖
0 = 𝑓embed(𝑥𝑖),  𝑥𝑖 ∈ 𝑉 
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where ℎ𝑖
0 is the initial feature vector for node iii, and fembed is an embedding function (e.g., one-hot 

encoding or learned embeddings). 

Bond Embeddings: 

ℎ𝑖𝑗 = 𝑔embed(𝑒𝑖𝑗),  𝑒𝑖𝑗 ∈ 𝐸 

3. Graph Neural Networks (GNNs) for Material Properties 

GNNs aggregate information from neighbouring nodes and edges to learn material properties: 

Node feature updates: 

ℎ𝑖
(𝑙+1)

= σ (𝑊(𝑙) ⋅ AGG({ℎ𝑖
(𝑙)

, ℎ𝑗
(𝑙)

, ℎ𝑖𝑗: 𝑗 ∈ 𝒩(𝑖)})) 

where: 

ℎ𝑖
(𝑙+1)

 is the updated feature vector for node iii at layer l+1l+1l+1. 

N(i) is the set of neighbours for node iii. 

𝑊(𝑙) are learnable weight matrices. 

AGGis an aggregation function (e.g., summation, averaging). 

σ is a non-linear activation function (e.g., ReLU). 

Global material property prediction: 

�̂� = 𝑓readout (READOUT({ℎ𝑖
(𝐿)

}𝑖=1
𝑛 )) 

where READOUT aggregates node-level information into a graph-level representation, and freadout is 

a predictor (e.g., fully connected network). 

 

4. Variational Autoencoders (VAEs) for Material Design 

VAEs learn a latent representation of materials and generate new structures: 

Latent Space Encoding: 

𝑧 = μ + ϵ ⋅ exp(log(σ2)) ,  ϵ ∼ 𝒩(0,1) 

where:𝜇 and σ are the mean and variance of the latent distribution. 

z is the latent vector for a material. 

Reconstruction Loss: 

ℒrcn = |𝑋 − 𝑋′|2 

where X and X′ are the original and reconstructed material features. 

Regularization Loss (Kullback-Leibler Divergence): 

ℒK = 𝐷KL (𝑞ϕ(𝑧|𝑋)|𝑝(𝑧)) 

Total Loss: 

ℒ = ℒrcn + β ⋅ ℒK 

 

5. Predicting Material Properties 

Regression or classification models predict material properties: 

Output Prediction: 

�̂� = 𝑓θ(𝑋),  𝑓θ = Neural Network Model 

Where �̂� is the predicted property (e.g., band gap, conductivity), and𝑓𝜃 is the trained model. 

Loss Function: 

For regression: ℒ =
1

𝑁
∑ (𝑦�̂� − 𝑦𝑖)

2𝑁
𝑖=1  

For classification: ℒ = −
1

𝑁
∑ (𝑦𝑖 log(𝑦�̂�) + (1 − 𝑦𝑖) log(1 − 𝑦�̂�))𝑁

𝑖=1  

 

6. Implementation and Applications 

Crystal Structure Prediction: ML models predict stable crystal structures based on atomic 

composition and features. 

Example: Predicting lattice parameters using GNNs. 
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Property Optimization: Bayesian optimization identifies optimal material candidates by combining 

ML-predicted properties with experimental constraints. 

Generative Design: VAEs and GANs create novel molecular frameworks or crystalline materials 

tailored to desired properties. 

 

Instead, AI and ML are high-data ways of not only materials design and optimization where 

big data of experimental and computational data are used to find hidden patterns and structure-

property relationship and make better decisions. For example, using real features that mark material 

properties, in other words, chemical content, crystallography, and processing parameters, it is 

possible to train the ML algorithms for predictive models that can quickly and effectively screen a 

range of material candidates with required and useful properties. 

These various applications of AI in materials science include; one of the most important applications 

being the design of novel battery materials with high energy density, high cyclability, and safe. 

Using the large amount of experimental and computational data regarding the electrochemical 

properties of battery materials, the ML algorithms can select the appropriate types of electrode 

materials, electrolytes, and nanoscale structures, which can improve the battery energy output and 

cycling stability (Xie & Grossman, 2018; Schütt et al., 2018; Ramsundar et al., 2019). 

In general, the application of AI and ML in materials sciences is full of opportunities to 

enhance the discovery and performance of new materials as well as to advance the conveyance of 

scientific ideas into technologies across many fields of technology. 

 

Applications in Computational Chemistry 

Computational chemistry is the science that strives to comprehend chemical systems by 

means of theoretical simulation. This discipline has been greatly transformed by the development of 

AI as well as ML tools like SchNet (Schütt et al., 2018), DeepChem (Wu et al., 2018), RDKit 

(Landrum, 2006), Gaussian, PySCF (Sun et al., 2018), Chempro (Goh  et al., 2017). Such methods 

provide fresh approaches for enhancing the rate of determination of molecular properties, for 

providing insights into the detailed process of chemical reactions and for providing design principles 

for chemical systems (Kipf et al., 2017; Gilmer et al., 2017; Schütt et al., 2017; Behler et al., 2007; 

Brockherde et al., 2017; Kingma et al., 2014; Schwaller et al., 2019; Caruana, 1997; Vaswani et al., 

2017). 

 

1. Molecular Graph Representation 

Molecules are represented as graphs: 

𝐺 = (𝑉, 𝐸),  𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛},  𝐸 = {𝑒𝑖𝑗 ∣ 𝑖, 𝑗 ∈ 𝑉} 

where V is the set of atoms (nodes) and E is the set of bonds (edges). 

 

2. Atomic and Bond Feature Initialization 

ℎ𝑖
0 = 𝑓embed(𝑥𝑖),  𝑥𝑖 ∈ 𝑅𝑑𝑣 ,  𝑒𝑖𝑗

0 = 𝑔embed(𝑏𝑖𝑗),  𝑏𝑖𝑗 ∈ 𝑅𝑑𝑒 

Here, 𝑥𝑖represents atomic features, 𝑏𝑖𝑗 represents bond features, and 𝑓embed,𝑔embedare embedding 

functions. 

 

3. Graph Neural Network (GNN) for Message Passing 

Message passing updates node features iteratively: 

𝑚𝑖𝑗
(𝑙)

= ϕ𝑚(ℎ𝑖
(𝑙)

, ℎ𝑗
(𝑙)

, 𝑒𝑖𝑗) 

ℎ𝑖
(𝑙+1)

= ϕℎ (ℎ𝑖
(𝑙)

, ∑ 𝑚𝑖𝑗
(𝑙)

𝑗∈𝒩(𝑖)

) 

mailto:shyamal.m68@gmail.com


Mondal/Current Scientia 27 No.02 (2024) 68-85 

 

*Correspondence:shyamal.m68@gmail.com 
© University of Sri Jayewardenepura 

78 
 

 

where 𝑚𝑖𝑗
(𝑙)

 is the message between atoms i and j, 𝒩(𝑖)is the set of neighbours of i, andϕ𝑚, 𝜙ℎ are 

differentiable functions (e.g., neural networks). 

 

4. Molecular Property Prediction 

A graph-level representation is computed using a readout function: 

ℎ𝐺 = READOUT({ℎ𝑖
(𝐿)

}𝑖=1
𝑛 ) 

�̂� = 𝑓NN(ℎ𝐺) 

where READOUTcan be summation, averaging, or attention mechanisms, and 𝑓NN is a neural 

network predicting molecular properties like energy, dipole moment, or HOMO-LUMO gaps. 

 

5. Quantum Chemistry Prediction (Schrödinger Equation) 

In quantum chemistry, deep learning approximates solutions to the Schrödinger equation: 

�̂�Ψ = 𝐸Ψ 

where �̂� is the Hamiltonian operator, E is the molecular energy, and Ψ is the wavefunction. Neural 

networks approximate Edirectly: 

𝐸 ≈ 𝑓θ(𝑋) 

where 𝑋 is the molecular descriptor (e.g., Coulomb matrix or density grid), and 𝑓θ is a neural 

network with parameters θ. 

 

6. Potential Energy Surface (PES) Learning 

The PES, which relates molecular structure to energy, is modeled as: 

𝐸(𝑅) ≈ 𝑓θ(𝑅) 

where 𝑅 is the 3D atomic coordinate matrix, and 𝑓θ is a neural network trained on ab initio data. 

 

7. Loss Functions 

a) Property Prediction Loss: 

ℒproperty =
1

𝑁
∑(𝑦�̂� − 𝑦𝑖)2

𝑁

𝑖=1

 

where 𝑦�̂� is the predicted property and 𝑦𝑖 is the ground truth. 

b) Wavefunction Loss (if approximating Ψ): 

ℒwavefunction = |Ψ − Ψ̂|2 

8. Transfer Learning for Quantum Properties 

Pre-trained models on quantum datasets (e.g., QM9) are fine-tuned: 

ℒ = ℒproperty + λ|θ − θ0|2 

where θ0 𝑖𝑠 the pre-trained weights and λ  controlthe regularization term to ensure the learned 

weights θ do not deviate significantly from the pre-trained model parameters. 

 

9. Neural Network Potentials (NNP) 

Neural network potentials (like ANI or SchNet) are used to predict molecular forces and energies: 

𝐸total = ∑ 𝑓atom(𝑥𝑖)

𝑁

𝑖=1

 

where 𝑓atom predicts the contribution of atom i based on its local environment. 

The gradient of the energy gives forces: 

𝐹𝑖 = −
∂𝐸total

∂𝑅𝑖
 

where 𝑅𝑖are the atomic coordinates. 

mailto:shyamal.m68@gmail.com


Mondal/Current Scientia 27 No.02 (2024) 68-85 

 

*Correspondence:shyamal.m68@gmail.com 
© University of Sri Jayewardenepura 

79 
 

 

10. Electron Density Prediction 

Deep learning models predict the electron density ρ̂(𝑟) directly: 

ρ̂(𝑟) = 𝑓NN(𝑟, 𝑍, 𝑅) 

where r is the spatial position, Z is the atomic numbers, and R is the atomic coordinates. 

 

11. Orbital Energy Prediction (HOMO/LUMO) 

Deep learning models can predict orbital energies: 

𝐸HOMO, 𝐸LUMO ≈ 𝑓θ(𝐶) 

where C represents molecular descriptors such as molecular fingerprints or Coulomb matrices. 

 

12. Reaction Prediction 

Deep learning for chemical reactions can be expressed as: 

𝑃( products ∣∣ reactants ) = softmax(𝑓θ(reactants)) 

where 𝑓θ is a neural network that scores potential products, and softmax normalizes the scores into 

probabilities. 

13. Multi-task Learning for Computational Chemistry 

A single neural network can predict multiple properties simultaneously: 

ℒ = ∑ α𝑘ℒ𝓀

𝐾

𝑘=1

 

where K is the number of tasks, ℒ𝓀 is the loss for the 𝐾-th task, and α𝑘 are task-specific weights. 

 

14. Attention Mechanisms for Atomic Interactions 

Attention is often used to weigh atomic interactions: 

α𝑖𝑗 =
exp(𝑒𝑖𝑗)

∑𝑘∈𝒩(𝑖) exp(𝑒𝑖𝑘)
,  𝑒𝑖𝑗 = 𝑓score(ℎ𝑖 , ℎ𝑗) 

where α𝑖𝑗 is the attention score between atom i and j, and 𝑓score is a neural network. 

 

15. Generative Models for Molecular Design 

Variational autoencoders (VAEs) or generative adversarial networks (GANs) are used to 

generate novel molecules: 

a) VAE Latent Space: 𝑧 = μ + σ ⋅ ϵ,  ϵ ∼ 𝒩(0,1) 

b) Molecule Reconstruction: �̂� = 𝑓decode(𝑧) 

These equations represent the foundational methods and concepts in applying AI and ML to 

computational chemistry, covering property prediction, quantum mechanics, reaction dynamics, and 

molecular design. 

Another important area of computational chemistry benefits from the integration of artificial 

intelligence is the enhancement of computation time of quantum mechanical calculations by the 

creation of data-driven models.94 It is to be noted that although quantum mechanics-based 

calculations are highly reliable in most of the cases, the time required for computation is relatively 

very high and hence makes it difficult if not impossible to screen large chemical systems. These 

surrogate models are trained using neural networks with architectures that mimic the general 

operation of quantum chemistry programs on quantum mechanical calculation input and output data 

sets. The use of these cheap surrogate models supports rapid chemoinformatics and high throughput 

virtual screening (Ramakrishnan et al., 2015). 

Furthermore, there are the approaches to predict the molecular properties and reactivity 

patterns based on the empirical models built on the core sets of experimentally measured values. For 

instance, using datasets, containing chemical structures with biological activities, ML algorithms can 

learn QSAR models and predict pharmacological profiles, toxicological endpoints, and the 

mailto:shyamal.m68@gmail.com


Mondal/Current Scientia 27 No.02 (2024) 68-85 

 

*Correspondence:shyamal.m68@gmail.com 
© University of Sri Jayewardenepura 

80 
 

 

environmental fate. Likewise, there are quantitative structure property relationship (QSPR) models 

which provide prediction of thermodynamic, electronic and transport properties of the chemical 

compounds based on the molecular descriptor and physical property datasets (Rupp et al., 2012). 

In addition, using AI and ML methods, one can study reaction mechanisms and predict the 

outcome of the reaction based on data. Just as reaction databases and computational simulations, ML 

algorithms can determine reaction templates, estimate both bond-breaking and forming events and 

offer the possible reaction pathways for further experimental optimization (Schütt et al., 2018; 

Gilmer et al., 2017; Rupp et al., 2012; Jørgensen et al., 2018; Gilmer et al., 2017). These can also 

foresee regio selectivity, stereo selectivity and chemoselectivity of transformations given patterns 

from training samples which can be very useful in considered synthesis and retrosynthetic analysis. 

In the areas of molecular modeling and molecular property and function prediction, AI and ML can 

leapfrog current challenges and give insights into chemical systems, and in the design of new 

molecular structures and functions, they can enhance and inspire new concepts and design strategies. 

 

Challenges and Future Directions 

While the integration of AI and ML in chemistry holds immense promise for advancing 

research and innovation, several challenges must be addressed to fully realize their potential and 

ensure responsible deployment in practice. One of the key challenges pertains to the interpretability 

and explainability of ML models, especially in complex chemical systems where underlying 

relationships may be non-linear and multifaceted. Ensuring transparency and robustness of AI-driven 

predictions is essential for building trust and confidence in the reliability of predictive models, 

particularly in safety-critical applications such as drug discovery and materials design. 

Moreover, the availability and quality of data pose significant challenges for training ML models, as 

chemical datasets are often heterogeneous, incomplete, and biased. Addressing data scarcity and data 

quality issues requires concerted efforts to curate, standardize, and share chemical data repositories, 

thereby enabling broader access. 

 

Conclusions 

In conclusion, the integration of Artificial Intelligence (AI) and Machine Learning (ML) in 

chemistry represents a transformative paradigm shift, offering unprecedented opportunities for 

accelerating research and innovation across diverse domains. From drug discovery and materials 

science to computational chemistry and chemical synthesis, AI and ML have demonstrated 

remarkable capabilities in predictive modeling, data analysis, and decision-making, enabling 

researchers to tackle complex challenges and discover new molecules and materials with tailored 

properties and functionalities. Despite the immense progress achieved, several challenges remain, 

including the interpretability of ML models, data quality issues, and ethical considerations. Moving 

forward, interdisciplinary collaboration, data sharing initiatives, and advances in algorithmic 

transparency will be crucial for harnessing the full potential of AI and ML in chemistry while 

ensuring responsible innovation and societal benefit. By leveraging the synergistic interplay between 

human expertise and machine intelligence, we can unlock new frontiers in chemical research and 

pave the way for transformative discoveries with profound implications for healthcare, energy, and 

sustainability. 
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