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Abstract 

 

The estimation of continuous death probability has motivated competitive interest in life 

assurance practice and mortality literatures with the study's specific goal of estimating the force of 

mortality with an acceptable level of accuracy. Using the non-parametric interpolation to model human 

mortality rates has several implications especially in terms of its effectiveness and practical 

applications in actuarial science, insurance and pension planning. In the context of mortality modeling, 

the model involves fitting mortality data to interpolation model that captures the forward-looking 

behavior of mortality rates over time. This model is capable of incorporating the future evolution of 

mortality rates based on past trends and economic conditions. Initiating Gauss forward interpolation 

process involves a crucial stage of theoretical work that yields much more valuable outcomes with 

tremendous practical significance to investigation of mortality behaviour. The objectives of the 

research are to detect kinks on instantaneous death rate and construct the corresponding mortality rates. 

From the results obtained, the modal age at death is around 84 for normal humans. Although the 

methodology has the potential to detect kinks due to random fluctuations or shocks in mortality rates 

that are difficult to predict deterministically otherwise, computational evidence confirm that the 

interpolative approach provides more accurate, improved, robust and reasonable lower mortality 

estimates compared to parametric results in Neil’s. This implies that while mortality rates may follow 

broad trends, there can be unexpected changes due to external factors like pandemics, economic shifts 

or healthcare advancements. 

 

Keywords: Probability, Estimation, Life assurance, Mortality, Lifetime 

Gauss 

interpolation  

 

Mortality 

intensity  

Distribution for 

random lifetime  

Modelling based 

on Gauss formula 

Application to 

mortality rates 

and wavy kinks 

Mortality 

assumptions 

 

Construction of 

mortality rates  

mailto:moyosiolorun@gmail.com


Ogungbenle et al/Current Scientia 28 No.01 (2025) 11-34 

*Correspondence: moyosiolorun@gmail.com 
© University of Sri Jayewardenepura 

12 

 

1. Introduction 

Wavy kinks refer to the phenomenon where mortality rates typically decreasing or steady 

suddenly kink at specific age points only to decrease or level off again. These kinks can occur at 

various ages but they are often observed at older ages such as around 80 120−  years. While the exact 

causes of wavy kinks are still being debated, plausible explanations are: (i) biases in mortality data 

collection or processing may contribute to the appearance of wavy kinks, (ii) differences in mortality 

rates between birth cohorts may lead to kinks in mortality rates at specific ages, (iii) the survival of 

certain subgroups within a population may influence mortality rates resulting in wavy kinks, (iv) the 

improvements in medical care and technology may lead to changes in mortality rates causing kinks at 

specific ages, (v) wavy kinks can also impact pension plan valuation as they can lead to changes in the 

expected number of deaths and consequently, the expected pension payments, while this can result in 

significant actuarial losses affecting the overall financial health of the pension plan, (vi) actuaries and 

life insurers must comply with regulatory requirements, such as Solvency II and IFRS 17 which 

demand accurate mortality modelling and risk assessment. Failing to account for wavy kinks can lead 

to non-compliance and potential penalties. Understanding and modelling wavy kinks can help improve 

mortality forecasting, enabling actuaries to better anticipate future mortality trends and make more 

informed decisions. In order to detect the presence of kinks, interpolation is deployed in mortality rate 

modelling.  

Mortality modelling is a crucial aspect of actuarial science as it enables the estimation of future 

mortality rates and the calculation of life insurance reserves, annuity values, and pension fund 

liabilities. Traditional mortality models such as the parsimonious models have been widely used in the 

industry. However, these models often suffer from limitations, such as assuming a constant mortality 

rate improvement over time. Gauss interpolation, a specialized technique has been proposed as an 

alternative approach to mortality modelling. 

Interpolation refers to the process of estimating a value between two known values in a 

sequence (Ndu, Nwuju & Bunonyo, 2019). According to literature, (DeBoor, 1978; Das and 

Chakrabarty 2016), in the context of data points, it involves obtaining an intermediate value of an 

actuarial function based on a set of given values. As observed by Ndu et al., (Ndu, Nwuju, and 

Bunonyo 2019), when there is a gap in survival data and data is available on both sides of the gap, 

Gauss interpolation can be used to estimate the corresponding mortality rates for the gap. A model was 

developed (Hudec 2017) for the force of mortality 
x  in (1) 

( ) ( )
1

d
j

x j

j

a x b x x
=

= +       (1) 

using local polynomial methods where ( )a x  and ( )jb x  are regression coefficients for each target age 

x . A major problem here is that the model cannot be used to compute both life annuity and life 

insurance functions but only limited to mortality intensities. 

However, an experimented alternative application of survival function lx in life insurance using 

a quadratic model of the form  lx = ax2 + bx + c through which the mortality intensity function μx was 

modelled (Pavlov and Mihova, 2018). A demerit in the work is that the quadratic model is not fit for 

continuous life insurance functions; moreover, quadratic functions are not capable of addressing the 

permissible age of validity in life insurance. 

The upper and lower bounds for the continuous life annuity xa   and life insurance xA  functions 

to address issues relating to incomplete life insurance data was derived (Souza, 2019). The bounds 

were not tested under any known parsimonious mortality laws. Furthermore, the method of the 

integrated hazard function through any known parametric or polynomial mortality intensities was not 

considered before the calculation of life annuity and life insurance benefits. 
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A crucial issue in life contingencies borders on the estimation of nonlinear mortality intensity 

functions which are analytically derived to develop products for life offices. In two accounts of work, 

(Dickson et al., 2013;  Siswono et al., 2021), it was concluded that the linear interpolation function.  

( ) 11x x xl l l  + += − +          (2) 

was deployed to address basic computational problems to ease out complex analytical estimations. The 

authors used the linear interpolation to simplify nonlinear mortality functions in mortality 

computations but unknown to the authors, the survival function K

xl C  that is 
xl is continuously 

differentiable up to order K . The implication is that the differential coefficient of the linear 

interpolation function becomes zero as from the second derivative and consequently higher order 

Taylor’s series expansion of mortality function is intractable.  

Mortality refers to the level of death within a population, measured by the number of deaths 

and the death rates characteristic of that population during a specific period (Hossain et al 2023). 

Others (Congdon 1993; Rabbi and Karmaker, 2013) describe mortality rate as the number of deaths 

per unit of time in a population, scaled to the size of that population. From their perspective, a life 

table representing a population’s mortality provides insights into its survivorship and mortality 

experiences. As noted by Hsieh (Hsieh, 1991), the information in a life table includes instantaneous 

mortality rates, probabilities of dying and surviving, and expected years of life remaining. Actuaries 

primarily use life tables to calculate annual provisions for life insurance and estimate the future value 

of retirement funds. Life tables are also crucial for determining the monthly premiums and 

contributions charged to policyholders. 

The force of mortality refers to the instantaneous rate of death at a specific moment, given 

survival up until that point. As defined by researchers (Kostaki and Panousis, 2001; Kostaki and 

Panousis, 2019) the force of mortality in a decrement life table is a function of the number of survivors 

in a particular age group. Unlike interval measures, it is defined as a function of survivors at each 

specific age. A life table is a mathematical tool used in demography to track mortality or fertility trends 

for a cohort or the entire population. However, estimating the force of mortality is challenging unless 

there are methods for creating analytical models based on the number of survivors xl  at different ages. 

Others (McCutcheon, 1983; Rabbi and Karmaker, 2013) foresaw this difficulty and proposed 

an interpolation technique to create mortality matrices, which was used to derive models for the 

instantaneous mortality rate. Several parametric functions have been developed in actuarial literature 

to model mortality rates. These models often involve more than two parameters, making parameter 

estimation challenging due to the lack of closed-form solutions. While maximum likelihood estimation 

is commonly used, it lacks the potential to solve parsimoniously system of first-order partial 

differential equations involving the estimation of the parametric aging parameter.  

According to researchers (Putra et al., 2019), using maximum likelihood algorithms requires 

inputting initial parameter values and if these values are far from the true values, the results may be 

misleading, with the algorithms failing to converge. An alternative approach focuses on using cohort 

experience to set assumptions for mortality at advanced ages, rather than directly modeling old-age 

mortality for annuitants (Astuti et al., 2013). This method involves interpolating mortality experience 

from the central age range to the population mortality experienced at older ages, ensuring that the 

mortality rate trajectories for annuity holders align with those of the general population. This approach 

helps guide the choice of which population mortality table an annuity holder should use. Although 

mortality tables typically account for assumptions only up to a specified ultimate age, death rate 

probabilities at this age are often fixed, even if the developed model predicts a lower rate. 

Consequently, life expectancy curves can be estimated from these mortality models. 

Actuaries have observed that mortality rates can be highly sensitive to changes in demographic 

and socioeconomic conditions. This observation stems from the principle of age-dependent mortality 

models, which have significantly impacted mortality forecasting. Parametric mortality models enable 

actuaries to assess the risks associated with uncertainties in mortality projections. However, intractable 
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issues often arise in computing rates, particularly when estimating the force of death, which is difficult 

when data is limited or the intensity is hard to quantify. 

The model developed by Lee and Carter has become one of the most widely used approaches 

for mortality forecasting (Lee and Carter, 1992). Although the model does not rely on polynomials, 

polynomial terms are often included to improve the model’s fit and capture long-term mortality trends 

more effectively. Extensions of the Lee-Carter model typically involve adding polynomial adjustments 

to the parameters or incorporating polynomial terms to better account for mortality improvement 

trends, particularly when dealing with high levels of mortality estimation and survival function values. 

The survival function xl  is graduated at various ages and the underlying mathematical equations are 

not provided. Gauss interpolation is a method for interpolating data using a Gaussian function. It is 

particularly useful when the data is sparse or irregularly spaced. In the context of mortality modelling, 

interpolation can be used to estimate mortality rates at intermediate ages or time points, based on a set 

of observed mortality rates. An introduction to numerical interpolation and its application to mortality 

analysis has been provided (Benjamin and Pollard, 1980). 

In one of the earliest applications of interpolation in mortality modelling (Elandt-Johnson and 

Johnson, 1980), the authors introduced interpolation to obtain mortality rates at intermediate ages, 

based on a set of observed mortality rates and demonstrated its potential in mortality modelling. The 

authors showed that Lagrange’s interpolation can provide more accurate estimates of mortality rates, 

particularly at intermediate ages, compared to traditional methods. Several mortality models have been 

proposed that incorporate interpolation. For example, an analytical mortality model that uses 

polynomial interpolation to estimate mortality rates at intermediate ages has been developed 

(McCutcheon, 1983) where the author demonstrated that the model can provide more accurate 

estimates of mortality rates, particularly for populations with limited data. Similarly, an analytic 

mortality model was proposed (Elandt-Johnson and Johnson, 1980) that involves a six-point 

Lagrange’s interpolation, demonstrating that it can provide more robust estimates of mortality rates 

compared to traditional models. 

The estimation of the death rate intensity μx at any given time is a challenge that frequently 

arises in life and other circumstances. It was observed that unless lx can be functionally expressed as a 

convergent series polynomial function, it becomes impossible to estimate the value of μx analytically 

from the first order ordinary differential equation defined by  

dx

dl
l x

xx −=  (Neil, 1977).  

This is specific because lx defines the number of lives expected to survive to age x  while μx is 

the instantaneous death rate. In this study (Neil, 1977), the author’s goal was to effectively estimate μx 

at a using Taylor's series expansion based on the foundation of known mortality data and under the 

supposition that lx is a convergent series polynomial function by interpolating at the commencement 

of the mortality table. However, if the mortality table is not based on a functional expression, it is 

impossible to determine the survival function lx at a fractional age when it is required unless through 

linear interpolation. As a result, the objective is to use methods of interpolation to derive approximate 

values rather than their actual analytical values.  

Modeling mortality rates using forward interpolation can be justified based on the following 

reasoning: Mortality rates presented in life tables exhibit smooth changes over time across age groups. 

Forward interpolation is particularly useful for smoothing mortality data, which is ideal when dealing 

with mortality rates that are continuous and smooth in nature. Interpolating method ensures that the 

estimated mortality rates are smoothly varying reflecting realistic changes over time across ages.  

Mortality data may be incomplete or have gaps especially at specific ages. Forward 

interpolation can be deployed to estimate the missing data points. This is particularly useful in actuarial 

work where a full mortality table is often needed but not all ages or periods may have observed data. 
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By interpolating using a reliable forward method, such gaps can be filled with reasonable estimates 

reducing bias in subsequent calculations. 

The forward interpolation method specifically utilizes known data points from a sequence and 

then estimates future points using a weighted average of known data. This makes it especially effective 

for mortality data when there is a natural progression of mortality rates with age over time. Forward 

interpolation assumes that past values have an impact on future values which aligns with the nature of 

mortality trends.  

The forward interpolation works by using a series of weights to adjust the estimated value. The 

weights are computed based on the differences between consecutive data points, ensuring that the 

interpolation is accurate and reflects the changes in the mortality rates as closely as possible. This 

method can provide a better fit for the observed mortality data particularly when mortality rates show 

non-linear trends. Forward interpolation is rooted in polynomial approximation which is robust for 

capturing trends in numerical data that vary smoothly.  

Given that mortality rates often follow smooth and continuous functions (such as increasing 

with age), the technique can model these trends accurately and efficiently without requiring complex 

non-linear models. In actuarial science, the modeling of mortality rates is essential for determining life 

expectancies, insurance premiums and pension liabilities. Forward interpolation provides a relatively 

effective tool for estimating mortality rates when there is incomplete data or when smoothing is 

necessary. It helps in producing estimates for forward-looking projections allowing for better decision-

making in financial and demographic planning. 

If the available mortality data is limited, forward interpolation can provide good estimates by 

leveraging existing data points efficiently. The method does not require huge amounts of data making 

it suitable for situations where only limited historical mortality data is available. Forward interpolation 

is relatively straightforward to implement computationally. This is advantageous when dealing with 

large datasets or when speed and computational efficiency are important. Actuarial and demographic 

models often need to be implemented in environments where computational resources or time are 

limited.  

In order to avoid the time-consuming parameter estimation, a viable option to model death rate 

and life expectancy curve is nonparametric forward estimation since it is also more widely applicable 

than parametric mortality models. The use of forward interpolation to model mortality rates is justified 

due to its ability to smoothly estimate missing values, handle incomplete or sparse data and provide 

reasonable approximations which align with the known trend of mortality data. It offers a balanced 

approach between accuracy, computational efficiency and simplicity, making it a valuable tool for 

modeling mortality rates in actuarial applications. 

Theorem:  

Let l  be the survival function of age x , then 

1

r r r

x xl E l−

− =          (3) 

 

Proof:     

( )
( )1 1 2

1
... 1

2

rr

x x x x x r

r r
l l rl l l− − − −

−
 = − + + + −      (4) 

The RHS is given as 

( )
( )

( )
( )

1 2

1 2

1
... 1

2

1
... 1

2

r

x x x x r

r r

x x x x

r r
l rl l l

r r
l rE l E l E l

− − −

− − −

−
− + + + −

−
= − + + + −

     (5) 
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( )
( )1 2

1

1
1 ... 1

2

rr r

x x

r r
l rE E E l− − −

−

 −
 = − + + + − 

 
    (6) 

 

( )1

1 1
r

r

x xl E l−

− = −         (7) 

 

1

1 1
1

r r r
r

x x x xr

E
l l l l

E E E
−

−    
 = − = =   

   
     (8) 

 

1

r r r

x xl E l−

− =          (9) 

QED  

 

Theorem: Let l  be the survival function of age x  and 0l  be the radix, then 

2 2
2

0 0 0 0 1 2... ...
2! 2!

x x x
e l x l l l l x l
 

+  +  + = + + + 
 

    (10) 

Proof:  

The LHS is given as, 

2 2
2 2

0 0 0 0... 1 ...
2! 2!

x xx x
e l x l l e x l
   

+  +  + = +  +  +   
   

   (11) 

 

( ) ( )
2

12

0 0 0 0 0 0...
2!

xx x x xEx
e l x l l e e l e l e l

+ 
 +  +  + = = = 

 
   (12) 

 

2 2 2
2

0 0 0 ... 1 ...
2! 2!

x

o

x x E
e l x l l xE l
   

+  +  + = + + +   
   

    (13) 

 
2 2

2

0 0 0 0 1 2... ...
2! 2!

x x x
e l x l l l l x l
 

+  +  + = + + + 
 

    (14) 

QED  

2. Methodology 

2.1 Gauss forward Interpolation 

In order to derive close form mortality rate intensity formula, the following successive 

differencing is required. 

2

0 1 1y y y− − =  +          (15a) 

2 2 3

0 1 1y y y− − =  +          (15b) 
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3 3 4

0 1 1y y y− − =  +          (15c) 

4 4 5

0 1 1y y y− − =  +          (15d) 

2

1 2 2y y y− − − =  +          (15e) 

2 2 3

1 2 2y y y− − − =  +          (15f) 

3 3 4

1 2 2y y y− − − =  +          (15g) 

4 4 5

1 2 2y y y− − − =  +          (15h) 

Use (5d) and (15h) to get the Newton’s formula 

( )
( )

( )
( )( )

( )

( )( )( )
( )

2 3

0 0 0 0

4

0

1 1 2

2! 3!

1 2 3
...

4!

p

p p p p p
y y p y y y

p p p p
y

− − −
= +  +  + 

− − −
+  +

   (15i) 

Substitute 2

0y , 3

0y  and  4

0y in (15i) to obtain  

( )
( )

( )
( )( )

( )

( )( )( )
( )

2 3 3 4

0 0 1 1 1 1

4 5

1 1

1 1 2

2! 3!

1 2 3
...

4!

p

p p p p p
y y p y y y y y

p p p p
y y

− − − −

− −

− − −
= +  +  +  +  + 

− − −
+  +  +

 (15j) 

 

( )
( )

( )
( )( )

( )

( )( )( )
( )

2 3

0 0 1 1

4

1

1 1 1

2! 3!

1 1 2
...

4!

p

p p p p p
y y p y y y

p p p p
y

− −

−

− + −
= +  +  + 

+ − −
+  +

   (15k) 

Substitute 4

1y−  to get 

( )
( )

( )
( )( )

( )

( )( )( )
( )

2 3

0 0 1 1

4

2

1 1 1

2! 3!

1 1 2
...

4!

p

p p p p p
y y p y y y

p p p p
y

− −

−

− + −
= +  +  + 

+ − −
+  +

   (15l) 

 

...241

3

31

2

2010

0 +++++= −−− yGyGyGyGyy p     (15m)

 

1G p=           (16) 

( ) 2

2

1

2! 2!

p p p p
G

− −
= =         (17) 
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( ) ( ) ( ) ( )2 3

3

11 1

3! 3! 3!

p p p pp p p
G

− −+ −
= = =      (18) 

( ) ( )( ) ( )4 2 3

4

2 21 1 2

4! 4!

p p p pp p p p
G

− − ++ − −
= =     (19) 

( )( ) ( ) ( )2 2 3 2 5 3 3

5

5 3

1 4 1 4 4 4

5! 5! 5!

5 4

5!

p p p p p p p p p p
G

p p p

− − − − − − +
= = =

− +
=

   (20) 

( ) ( )

( )

( )

( ) ( )

( )

( ) ( )( )

( )

( )( ) ( )( )

( )

0
1 2 30

0 1 10 1 2 3
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1 1 1 1

4 5

2 34 5

2 2

1 1

1 1 1

ln ln ln ln

1 1 2 2 1 1 2

ln ln

p

p p p p py p
y y y y

x x x x
dx dx dx dx

x x x x

p p p p p p p p p
y l

x x
dx dx

x x

− −   

− − 

− + −
= +  +  + 

+ − − + + − −
+  + 

   

 

 (21) 

( ) ( ) ( )

( ) ( )( ) ( )( ) ( )( )

( ) ( )( )( ) ( )

2 30 1
1 1

0

4 5

2 2

1 1 1

0! 1! 2! 3!

1 1 2 2 1 1 2

4! 5!

1 1 2 3 ... 1
...

!

x xx x
p

x x

n

x

p p l p p p ll p l
l

p p p p l p p p p p l

p p p p p p n l

n

− −

+

− −

−  + −  
= + + +

+ − −  + + − − 
+ +

+ − − − − + 
+ +

  (22) 

Setting p t=  and ly =  in (22) 

( ) ( ) ( )

( ) ( )( ) ( )( ) ( )( )

2 30 1
1 1

0

4 5

2 2

1 1 1

1! 1! 2! 3!
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t

x x
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l

t t t t l t t t t t l

− −

+

− −
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= + + +

+ − −  + + − − 
+ +

   (23) 

Now txtx +=++ 0  
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1
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  (24) 
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( ) ( ) ( )
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1
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l    (26) 

Differentiate the survival function txl +  with respect to t  and obtain 

( ) ( ) ( )

( )

2 3 3 2 421
1 21

4 2 5

2

3 1 4 2 6 22 1d
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5 15 4
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−
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   (27) 

By definition,  

1 x t
x t

x t

dl

l dt
 +

+

+

= −           (28) 

( ) ( ) ( )

( )
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−
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−

  (29) 

It is required to set 0=t  in (29) to have 

0

1 1x t x
x

x t xt

dl dl

l dt l dx
 +

+ =

 
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        (30) 

Setting 0=t  in (29) 

( )( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( )
x

x

x

xx

x

x

x

xx

x

l

l

l

ll

l

l

l

l

dx

dl

l

!5

401505

!4

2060204

!3

103

2

1021

2

524

2

423

1

32

1

21

−

−−−

+−
−

+−−
−

−
−

−
−


−=−

  (31) 
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The equation (63) has the following implication as stated in the theorem below 

Theorem: 

Let xT  be the random life time of a life aged x , then 

( )
0

3

1 2 3 1 2

3
1

20 60 15 2 30 31 1 1 1

2 12 60 720

xT

x x x x x x
s x x

s x x

f d
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l l dx

  



+ + + − −

=

 − + − + −
= + − − 

 





  (66) 

Proof 

( ) ( ) ( )
0 0

xx T x xT f d p d      
 

+= =  E        (67) 
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Sum up the integrals in (84)-(87) to get. 
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Equate (70) and (90) to obtain the expected value of the random life time 

( )
0

3

1 2 3 1 2

3
1

20 60 15 2 30 31 1 1 1

2 12 60 720

s x x

x x x x x x
s x x

s x x

p ds T

l l l l l l d
p l

l l dx




+ + + − −

=

=

 − + − + −
= + − − 

 





E

  (91) 

QED   

3. Result and Discussion  

The results obtained are given in Tables 1 and 2 as well as in Figure 1. One of the key features 

of the Gauss forward model is its potential to incorporate random fluctuations or kinks in mortality 

rates that are difficult to predict deterministically as observed in Figure 1(f). This approach recognizes 

that while mortality rates may follow broad trends, there can be unexpected changes due to external 

factors like pandemics, economic shifts or healthcare advancements as observed in Figure 1(b). The 

exhibited random potential helps in accounting for uncertainty and provides a range of potential 

outcomes of the deterministic forecast. This is particularly useful in risk management where insurers 

and pension funds need to consider worst-case and best-case scenarios in their financial planning. 

Figures 1(b) and (f) may have the following consequences: (i) the wavy kinks may lead to inaccurate 

mortality predictions as the model may struggle to capture the underlying patterns and trends, (ii) the 

wavy kinks can result in biased life expectancy estimates which can affect calculations of life 

expectancy, health life expectancy, and disability-free life expectancy, (iii) the wavy kinks can increase 

uncertainty in mortality modelling, making it more challenging to predict mortality rates and life 

expectancy, (iv) the wavy kinks can lead to model risks as mortality models may not be able to capture 

the underlying patterns and trends, potentially leading to incorrect conclusions and decisions, (v) the 

wavy kinks can have significant actuarial implications, affecting the calculations of insurance 

premiums, pension benefits, and social security payments.  

 

Table 1: Gauss forward mortality table for male 

x  xl  
x  

x xl   xd  

0 100000 0.000054 5 587 

1 99413 0.000252 25 40 

2 99373 0.000194 19 27 

3 99346 0.000166 16 23 

4 99323 0.000148 15 18 

5 99306 0.000141 14 16 

6 99290 0.000140 14 15 

7 99276 0.000114 11 14 

8 99262 0.000095 9 12 

9 99249 0.000083 8 10 

10 99239 0.000114 11 9 

11 99230 0.000192 19 10 

12 99221 0.000325 32 15 

13 99206 0.000476 47 25 

14 99181 0.000641 64 40 
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15 99141 0.033941 3365 56 

16 99086 0.247959 24569 70 

17 99015 0.997167 98734 84 

18 98932 0.331255 32772 94 

19 98837 0.497806 49202 103 

20 99 51.196096 5055 112 

21 98623 0.001252 124 120 

22 98503 0.001225 121 124 

23 98379 0.001161 114 123 

24 98257 0.001107 109 118 

25 98139 0.001072 105 111 

26 98028 0.001051 103 107 

27 97921 0.001087 106 104 

28 97817 0.001134 111 105 

29 97713 0.001179 115 108 

30 97604 0.001241 121 113 

31 97491 0.001329 130 118 

32 97373 0.001416 138 125 

33 97248 0.001538 150 134 

34 97114 0.001664 162 144 

35 96971 0.001809 175 155 

36 96815 0.001963 190 168 

37 96647 0.002141 207 183 

38 96464 0.002331 225 198 

39 96266 0.002528 243 216 

40 96050 0.002733 262 234 

41 95816 0.002970 285 253 

42 95563 0.003209 307 274 

43 95290 0.003462 330 295 

44 94994 0.003758 357 318 

45 94676 0.004033 382 343 

46 94333 0.004257 402 370 

47 93963 0.004450 418 392 

48 93571 0.004637 434 410 

49 93161 0.004862 453 426 

50 92735 0.005158 478 443 

51 92292 0.005533 511 465 

52 91827 0.005999 551 494 

53 91333 0.006550 598 530 

54 90803 0.007162 650 574 

55 90229 0.007827 706 624 

56 89605 0.008558 767 678 

57 88927 0.009352 832 736 

58 88191 0.010219 901 799 
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59 87392 0.011192 978 866 

60 86526 0.012289 1063 939 

61 85587 0.013506 1156 1021 

62 84567 0.014840 1255 1109 

63 83458 0.016332 1363 1205 

64 82253 0.017961 1477 1308 

65 80945 0.019712 1596 1419 

66 79525 0.021554 1714 1536 

67 77989 0.023486 1832 1655 

68 76334 0.025624 1956 1773 

69 74561 0.028067 2093 1893 

70 72668 0.030648 2227 2024 

71 70645 0.033248 2349 2161 

72 68484 0.035911 2459 2289 

73 66195 0.038862 2573 2405 

74 63790 0.042292 2698 2515 

75 61275 0.046202 2831 2634 

76 58641 0.050501 2961 2765 

77 55877 0.055274 3089 2896 

78 52980 0.060584 3210 3025 

79 49955 0.066461 3320 3150 

80 46805 0.072961 3415 3266 

81 43539 0.080077 3486 3369 

82 40170 0.087756 3525 3453 

83 36717 0.095979 3524 3509 

84 33208 0.104560 3472 3528 

85 29680 0.113456 3367 3502 

86 26177 0.122621 3210 3425 

87 22753 0.131822 2999 3293 

88 19460 0.141027 2744 3108 

89 16351 0.150114 2455 2875 

90 13476 0.158828 2140 2602 

91 10874 0.167145 1818 2299 

92 8575 0.175009 1501 1980 

93 6596 0.181620 1198 1658 

94 4938 0.186648 922 1348 

95 3590 0.190311 683 1057 

96 2533 0.192808 488 799 

97 1734 0.194002 336 582 

98 1152 0.194285 224 409 

99 743 0.195873 146 277 

100 466 0.196280 91 182 

101 284 0.194542 55 117 

102 167 0.196307 33 72 
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103 95 0.185789 18 43 

104 52 0.197756 10 25 

105 27 0.181481 5 14 

106 14 0.164286 2 7 

107 6 0.255556 2 4 

108 3 0.116667 0 2 

109 1 0.050000 0 1 

110 0 0.000000 0 0 

 

Table 2: Gauss forward mortality table for female 

x     xl       
x                  

x xl       xd  

0 100000 0.000057 6 495 

1 99505 0.000198 20 35 

2 99470 0.000138 14 23 

3 99447 0.000118 12 17 

4 99430 0.000120 12 13 

5 99418 0.000122 12 12 

6 99406 0.000117 12 12 

7 99394 0.000104 10 12 

8 99382 0.000100 10 11 

9 99371 0.000100 10 10 

10 99361 0.000099 10 10 

11 99351 0.000135 13 10 

12 99341 0.000183 18 12 

13 99330 0.000249 25 16 

14 99314 0.000307 31 21 

15 99293 0.000361 36 28 

16 99265 0.000397 39 33 

17 99232 0.033638 3338 38 

18 99194 0.248943 24694 40 

19 99154 0.998191 98975 40 

20 99114 0.332315 32937 40 

21 99074 0.498875 49426 41 

22 99074 50.396296 4989 41 

23 98992 0.000438 43 42 

24 98950 0.000455 45 43 

25 98907 0.000474 47 44 

26 98863 0.000498 49 46 

27 98817 0.000538 53 48 

28 98769 0.000568 56 51 

29 98718 0.000619 61 55 

30 98663 0.000672 66 59 
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31 98605 0.000731 72 64 

32 98541 0.000820 81 69 

33 98472 0.000895 88 76 

34 98396 0.000984 97 84 

35 98311 0.001090 107 93 

36 98219 0.001185 116 102 

37 98117 0.001282 126 111 

38 98005 0.001390 136 121 

39 97884 0.001513 148 131 

40 97753 0.001633 160 142 

41 97611 0.001744 170 154 

42 97457 0.001842 180 165 

43 97292 0.001867 182 175 

44 97117 0.002587 251 184 

45 96933 0.000141 14 195 

46 96739 0.003038 294 207 

47 96531 0.003551 343 221 

48 96511 0.002584 249 235 

49 96076 0.002910 280 251 

50 95825 0.003158 303 269 

51 95556 0.003461 331 291 

52 95265 0.003819 364 316 

53 94949 0.004222 401 347 

54 94602 0.004670 442 382 

55 94220 0.005171 487 421 

56 93799 0.005699 535 464 

57 93335 0.006289 587 511 

58 92824 0.006929 643 561 

59 92264 0.007628 704 614 

60 91649 0.008420 772 673 

61 90976 0.009287 845 738 

62 90239 0.010213 922 808 

63 89431 0.011251 1006 883 

64 88548 0.012413 1099 964 

65 87585 0.013639 1195 1052 

66 86533 0.014938 1293 1147 

67 85386 0.016280 1390 1243 

68 84143 0.017792 1497 1341 

69 82801 0.019525 1617 1442 

70 81359 0.021375 1739 1556 

71 79803 0.023289 1859 1678 

72 78125 0.025277 1975 1799 

73 76326 0.027515 2100 1917 

74 74409 0.030147 2243 2036 
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75 72373 0.033135 2398 2170 

76 70203 0.036407 2556 2320 

77 67883 0.040021 2717 2477 

78 65406 0.044141 2887 2636 

79 62770 0.048893 3069 2801 

80 59969 0.054134 3246 2977 

81 56992 0.059763 3406 3158 

82 53833 0.065892 3547 3328 

83 50505 0.072597 3667 3479 

84 47027 0.079981 3761 3609 

85 43418 0.088093 3825 3716 

86 39702 0.096836 3845 3796 

87 35906 0.106189 3813 3839 

88 32067 0.115913 3717 3834 

89 28234 0.125903 3555 3770 

90 24463 0.135955 3326 3642 

91 20822 0.145866 3037 3446 

92 17376 0.155536 2703 3186 

93 14190 0.164340 2332 2873 

94 11317 0.171918 1946 2520 

95 8797 0.178163 1567 2139 

96 6658 0.183206 1220 1755 

97 4903 0.186736 916 1390 

98 3513 0.189866 667 1064 

99 2449 0.193290 473 786 

100 1663 0.195801 326 566 

101 1097 0.196961 216 396 

102 701 0.198407 139 268 

103 433 0.198460 86 176 

104 258 0.197545 51 111 

105 147 0.193424 28 67 

106 80 0.188750 15 39 

107 41 0.180894 7 21 

108 20 0.154167 3 11 

109 9 0.135185 1 5 

110 4 0.283333 1 2 

111 2 0.200000 0 1 

112 1 0.050000 0 0 

113 0 0.000000 0 0 
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Figure 1. (a) The trajectory of male survival function. (b) The trajectory of male mortality rate 

intensity. (c) The trajectory of male curve of death. (d) The trajectory of the male number of deaths. 

(e) The trajectory of female survival function. (f) The trajectory of female curve of death. (g) The 

trajectory of female mortality rate intensity. (h) The trajectory of female number of deaths. 
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A higher lx at older ages compared to the current population indicates mortality improvement 

over time. This would suggest that individuals are expected to live longer as improvements in 

healthcare, lifestyle and technology reduce death rates. In Figure 1(a) and (e), the lx curve flattens or 

declines suggesting that the improvements in survival are slowing down or even reversing. Where the 

Gauss forward interpolation produces a decreasing μx over time, this indicates a decline in mortality 

rates, suggesting that people are living longer and mortality is improving. 

In Tables 1 and 2, the constant or increasing μx would suggest stable or deteriorating mortality, 

meaning life expectancy is not improving or is expected to decrease. Gauss interpolation is used to 

estimate mortality rates at intermediate ages or time points, based on a set of observed mortality rates. 

This allows for the creation of a mortality model that can be used to predict future mortality rates. The 

interpolation has a smoothing effect on the mortality rates, which can help to reduce the impact of 

random fluctuations in the data. This can result in a more stable and reliable mortality model. 

Consequently, the interpolation can handle sparse data, which is common in mortality modelling. This 

means that the approach can be used to estimate mortality rates even when there is limited data 

available. In Figure 1(c) and (g), the modal age at death is roughly 84 which is normal for human 

beings. The trajectories form asymptotes to age axis while Figure 1(d) and (h) show the trajectories 

for the number of deaths. 

The Gauss forward model often produces a range of mortality rates under different assumptions 

(different mortality improvement scenarios). This is to allow actuaries to conduct stress testing to 

understand how sensitive their projections fall in line with changes in mortality trends. The ability to 

model different future scenarios helps to understand risks such as how much life expectancy could 

deviate from current projections in case of unforeseen events like pandemics or technological 

breakthroughs. The wavy kinks in the female’s curves Figure 6 suggest that the Gauss forward 

interpolation provides a random approach to mortality which can be used to assess solvency risk and 

ensure that life insurers and pension funds maintain adequate reserves in light of future uncertainties 

in mortality trends.  

It is recommended that Governments and health organizations can use the projections from 

Gauss forward interpolation to plan for healthcare resources, allocate funds and design public health 

policies aimed at addressing aging populations and improving life expectancy. Accurate mortality 

projections are crucial for pricing life insurance, annuities and pension plans. If mortality is improving 

more than expected, insurance companies may face increased payouts for annuities and pension funds. 

Consequently, insurers may need to adjust their reserves to account for longer lifespans. 

 

4. Conclusions 

Following the results of this study, the forward model can be integrated with other actuarial 

models to assess how changes in mortality rates may affect the pricing and risk of life insurance or 

annuities. It can be combined with models that take into account interest rates, inflation and investment 

returns allowing for more comprehensive financial modeling. This integration provides a better 

understanding of how changes in mortality may impact future liabilities, helping financial institutions 

to set more accurate reserves and ensure solvency. It may further allow actuaries to adjust their models 

in response to evolving market conditions or demographic changes.  

While the forward model can provide more accurate projections of mortality, its effectiveness 

is highly sensitive to the assumptions underlying it. The model assumes that mortality improvements 

may continue at the same rate as in the past where future improvements are slower than expected or 

vice versa, this could lead to significant discrepancies in the predicted mortality rates. Therefore, a 

careful calibration of the model is essential as small changes in assumptions about the rate of 

improvement applied can lead to large differences in the output. This requires careful selection of input 

mortality data and an understanding of the potential impacts of various assumptions on long-term 

projections. 
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The forward model is especially useful for modeling mortality rates over long-time horizons. 

This is crucial for financial products like life insurance policies, pensions and annuities, where the 

future liabilities are long-term and highly sensitive to mortality assumptions. Accurate mortality 

predictions can affect the pricing and risk management strategies of these products. By using a 

forward-looking model like the forward, insurers and pension funds can estimate their liabilities better 

which helps in setting appropriate premiums, reserves and solvency buffers. 

The forward model generally operates on population-level mortality data such as national 

mortality tables or life expectancy projections. These data can be influenced by various factors 

including changes in public health policies, the advent of new treatments or shifts in demographic 

patterns. The model may struggle to account for individual heterogeneity such as differences in 

mortality rates between socioeconomic groups. This can be a limitation when applying the model to 

highly personalized products like individual life insurance policies or tailored annuity contracts. 

Calibrating the forward model to historical mortality data can be challenging, especially when 

mortality trends exhibit non-linear behaviors or when data quality is inconsistent. Furthermore, the 

model might need to be adapted to reflect specific market or demographic conditions which can 

introduce further complexity. There is a risk that the model might not capture future mortality 

dynamics accurately if the calibration process does not fully account for shifts in underlying causes of 

death such as the outbreak of pandemics or technological breakthroughs in healthcare. 

The forward model assumes that mortality trends are predictable based on historical data but it 

can fail to account for sudden social, environmental or policy changes. For instance, mortality rates 

might improve drastically due to a new public health intervention or conversely, a sudden rise in 

mortality could occur due to an economic or environmental crisis. Relying too heavily on the forward 

model may lead to overconfidence in predictions, potentially exposing insurers or pension funds to 

significant risks. Furthermore, incorrect predictions about future mortality rates could have social 

implications, especially if they impact retirement planning or healthcare policies. 

The forward model provides a powerful tool for projecting mortality rates to imply improved 

forecasting accuracy, better integration with financial modeling and a more comprehensive 

understanding of future mortality risks. However, it requires careful calibration, validation and 

consideration of various assumptions as small errors in input data or assumptions can lead to significant 

inaccuracies. Furthermore, the model may be integrated with other models to ensure that it reflects the 

full range of uncertainties surrounding future mortality trends. The directions for further research may 

require that the stochastic nature of the model may also involve additional validation and stress testing 

to ensure that the model remains within acceptable risk limits.  

Future research should focus on penalized splines which can accommodate a combination of 

spline smoothing and penalty functions to control the smoothness of the mortality curve. Furthermore, 

actuaries can experiment Bayesian smoothing to smooth out the mortality curve and then capture the 

uncertainty associated with wavy kinks. The use of complex sophisticated interpolation models like 

the forward to estimate mortality rates must be accompanied by rigorous regulatory scrutiny. 

Regulatory bodies often require actuaries to demonstrate that their models are sound, transparent and 

based on reliable data. Life insurers need to ensure that their use of the forward model aligns with 

regulatory requirements and best practices in actuarial science. This could involve regular validation 

against actual mortality outcomes and maintaining transparency in the assumptions used in the model. 
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