

Editorial Article

Spotting Fake Science: A Guide for the Science-Literate Reader

Theshini Perera, PhD
Editor-in-Chief
Current Scientia

Scientific communication has taken a dangerous turn in an era where information spreads faster than ever through social media and online platforms. Distinguishing legitimate science from cleverly disguised pseudoscience has become increasingly challenging, even for those with scientific backgrounds. Understanding how to identify these deceptive practices is crucial not only for personal decision-making but for maintaining public trust in genuine scientific research.

Effects of fake science traverse beyond scientific publications. It captures a vast majority of decision makers who possess little or no scientific literacy supported by the general public, awed by social media that filters content based on “likes”. The stakes could not be higher. We have experienced that fake science has influenced public health decisions during pandemics, undermined environmental policy debates, and eroded confidence in established scientific consensus on issues ranging from climate change to vaccine safety. For the science-educated reader, developing a keen eye for these deceptions is a responsibility to help preserve scientific integrity in public discourse.

Fake science rarely appears as obvious quackery. Instead, it mimics legitimate scientific communication while systematically violating the principles of rigorous research. Legitimate scientific discoveries follow a well-established path: research, peer review, publication in reputed journals, and subsequent scrutiny by the scientific community. Fake science frequently circumvents this process. Claims announced through press releases, social media, or non-peer-reviewed platforms should raise immediate suspicion.

A prime example occurred in 2020 when Dr. Didier Raoult announced hydroxychloroquine as a COVID-19 treatment through media interviews and preprint papers with severe methodological flaws, bypassing rigorous peer review. In 2011, Rossi claimed to have invented an "E-Cat" cold fusion device producing unlimited clean energy through low-energy nuclear reactions. Despite announcing his breakthrough through press releases rather than peer-reviewed publications, he attracted significant investment. The chemistry community remained sceptical because the claimed nuclear reactions violated known principles, and Rossi refused independent testing. No peer-reviewed validation ever materialized.

Rather than engaging with scientific evidence on its merits, purveyors of fake science attack the scientific establishment itself, positioning themselves as brave truth-tellers fighting against a corrupt or conspiratorial scientific community. The climate change denial movement exemplifies this tactic. Rather than addressing overwhelming evidence, prominent denialists frame climate science as a conspiracy driven by funding motives, despite fossil fuel industries spending orders of magnitude more money promoting scepticism than governments spend on climate research. Literature shows 88,125 peer-reviewed studies claiming climate change is caused by humans, versus only 28 papers sceptical of human causation.

Personal testimonials and isolated case studies, while compelling to human psychology, cannot substitute for rigorous statistical analysis of large datasets. Fake science practitioners excel at

collecting dramatic anecdotal evidence while ignoring contradictory data. When a combination of pseudoscience, politics and human emotions run high, legit claims are seen as a threat to human existence. Sophisticated fake science employs legitimate scientific terminology in incorrect or misleading ways. Terms like "quantum," "energy fields," "toxins," or "natural" are frequently misused to lend scientific credibility to unsubstantiated claims.

Two events occurring together does not establish that one causes the other. Fake science practitioners routinely ignore confounding variables and the basic requirement for controlled studies to establish causal relationships. Legitimate research requires transparent reporting of all results, including negative findings. Fake science selectively presents data supporting only predetermined conclusions while ignoring contradictory evidence.

Laetrile (amygdalin) promoters cherry-picked data to market this compound as a cancer cure despite overwhelming evidence of ineffectiveness and toxicity. Laetrile is a cyanogenic glycoside from apricot pits that breaks down to release hydrogen cyanide (HCN). Proponents highlighted anecdotal recoveries and small, poorly controlled studies while ignoring multiple large-scale National Cancer Institute clinical trials showing no anti-cancer effect. They dismissed the chemistry: the enzyme β -glucosidase that breaks down laetrile is present throughout the body, meaning cyanide release is non-selective. Documented cases of cyanide poisoning, including deaths, were dismissed while mountains of negative clinical trial data were ignored.

Fake science presents fringe viewpoints as equally valid alternatives to established scientific understanding, creating an illusion of ongoing debate where little genuine scientific controversy exists. Fake science relies on appeals to authority, but the authorities cited often lack relevant expertise in the field under discussion. Linus Pauling, a two-time Nobel Prize winner (Chemistry 1954, Peace 1962), promoted megadose vitamin C therapy for treating cancer and the common cold despite limited evidence. While Pauling was brilliant in quantum chemistry and chemical bonding, his authority did not translate to expertise in clinical medicine. His claims about vitamin C (ascorbic acid, $C_6H_8O_6$) at doses of 10-100 g per day were based more on theoretical reasoning than rigorous clinical trials. When controlled studies failed to show dramatic benefits, he dismissed them. Promoters continue to cite "Nobel Prize winner Linus Pauling" as authority, exploiting his legitimate credentials in structural chemistry to lend credibility to claims in clinical medicine where his expertise was limited.

This is the exact reason why established scientists with a public presence should not be overconfident and driven by personal motives that undermines the rigor of science. Their words are taken literally by the public and it becomes hard to change the perceptions with evidence. The persistent claim that vaccines cause autism represents perhaps the most damaging example of fake science in recent decades, demonstrating nearly every deceptive tactic outlined above.

The vaccine-autism link originated with Andrew Wakefield's 1998 study in *The Lancet*, claiming a connection between MMR vaccine and autism in 12 children. This study used an impossibly small sample size, lacked proper controls, relied on parental recollections, and presented correlation as causation. Wakefield had been paid by lawyers planning to sue vaccine manufacturers and conducted invasive procedures on children without proper ethical approval. *The Lancet* retracted the study in 2010, and Wakefield lost his medical license for fraud.

The scientific community conducted some of the largest epidemiological studies in medical history. A 2014 meta-analysis examined over 1.2 million children across multiple countries and found no association between vaccines and autism. Danish researchers followed 537,303 children—no connection. Japanese researchers found autism rates continued rising even after MMR vaccination was discontinued. The evidence against any vaccine-autism link became overwhelming.

The thimerosal controversy provides an instructive case study. Thimerosal is an organomercury compound ($C_9H_9HgNaO_2S$) used as a preservative. Anti-vaccine activists claimed the mercury in thimerosal caused autism, exploiting legitimate concerns about mercury toxicity. However, this fundamentally misunderstands chemistry: thimerosal breaks down to ethylmercury ($C_2H_5Hg^+$), which has completely different toxicokinetics than methylmercury (CH_3Hg^+), the bioaccumulative form in

contaminated fish. Ethylmercury is rapidly cleared (half-life ~7 days), while methylmercury accumulates (half-life 40-50 days). Despite thimerosal being removed from most childhood vaccines by 2001 as a precautionary measure, autism rates continued to rise, definitively disproving any causal link.

Fake science around vaccines has had measurable public health consequences. Vaccination rates dropped in communities where anti-vaccine messaging took hold, leading to outbreaks of preventable diseases. Measles cases in the US increased dramatically in areas with low vaccination coverage. Parents of autistic children were diverted toward dangerous "biomedical" interventions, including bleach enemas and chemical chelation.

Building Your Defence: Practical Strategies

Source Verification and Journal Quality

Always trace claims back to their original source. Was the research published in a peer-reviewed journal? What is the journal's reputation? Scientific publications being a lucrative business, predatory journals lacking rigorous peer review have proliferated. Resources like the Directory of Open Access Journals (DOAJ) can help assess publication quality.

Replication and Scientific Consensus

Single studies rarely establish scientific truth definitively. Look for evidence of replication by independent research groups. Scientific consensus emerges through accumulation of evidence across multiple studies, methodologies, and research groups. Extraordinary claims require extraordinary evidence—and extraordinary consensus.

Methodology Scrutiny

Examine study design carefully. Were appropriate control groups used? Was the sample size adequate? Were confounding variables controlled? As an example, for chemistry related claims, verify whether proposed mechanisms are consistent with established chemical principles. Does the claim violate thermodynamics? Are reaction mechanisms plausible given known reactivity patterns?

Hypothesis built on hypothesis

Even in reputed articles we often notice over interpretation of data. Translating such content to social media often makes false claims. Research into anticancer drug leads is being exaggerated as miracle drugs discovered against cancer. This overexploitation of human vulnerability is intended by scientists for transient fame and extortion of public funds.

Follow the Money and Motivations

While funding sources don't automatically invalidate research, they provide important context. Industry-funded studies warrant extra scrutiny, particularly when they reach conclusions favourable to the funding organization's interests.

When Fake Science Gains Power: The Administrative Threat

The most dangerous evolution occurs when fake science promoters gain positions of administrative authority, transforming fringe beliefs into official policy. This threat materialized dramatically in 2025 with Robert F. Kennedy Jr.'s appointment as U.S. Health and Human Services Secretary.

Despite overwhelming scientific evidence disproving vaccine-autism links, Kennedy used his authority to legitimize this debunked claim through official channels. His administration awarded federal contracts to "investigate whether there is a link between vaccinations and autism" and hired David Geier, a vaccine sceptic disciplined for practicing medicine without a license.

Kennedy's actions demonstrate institutional capture: firing all 17 members of the CDC's vaccine advisory committee, cancelling studies on mRNA vaccines while redirecting funds toward investigating debunked claims and forcing resignations of officials who refused to compromise scientific recommendations. Under Kennedy's influence, measles cases reached nearly a 20-year high by June 2025, with pertussis deaths occurring in unvaccinated children despite effective vaccines being available. This demonstrates how administrative promotion of fake science directly threatens public health.

Conclusions

Distinguishing legitimate science from fake science requires active engagement with evidence, methodology, and scientific principles. Examples throughout demonstrate that fake science exploits gaps in public understanding of fundamental scientific principles. By recognizing warning signs—peer review bypass, anti-establishment rhetoric, anecdote-driven arguments, jargon misappropriation, correlation-causation errors, cherry-picking, false equivalence, and authority misuse—we can protect ourselves and our communities from deceptive claims.

The responsibility falls on all science-literate individuals to serve as informed sceptics and advocates for rigorous evidence. In an era where misinformation spreads at the speed of social media, our ability to distinguish genuine science from its sophisticated imitators has never been more critical. The stakes of scientific literacy have never been higher when the difference between evidence-based and ideologically driven policy can determine public health outcomes for entire populations.