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Abstract

In the era of wearable technology, integrating machine learning into performance arts opens new
dimensions for user interaction and creativity. This project presents the development of Smart Dance
Shoes that utilize motion sensors and machine learning algorithms to deliver real-time RGB light
synchronization based on dance movements. The system is built using the ESP32-S3 microcontroller
and the MPU-6050 sensor, which capture accelerometer and gyroscope data from the dancer’s
movements. These data inputs are processed through a machine learning model developed on Edge
Impulse, which classifies different dance gestures such as jumps, spins, and steps and triggers
corresponding lighting effects to enhance visual performance. The hardware is designed to be
lightweight, portable, and user-friendly, making it suitable for dancers, performers, and fitness
enthusiasts. Key components include RGB LED neon strips, a 3.7V LiPo battery, and Bluetooth
integration for wireless customization. Testing covered unit, integration, and performance evaluations
to ensure stability, low latency, and energy efficiency. Future improvements include multi-shoe
synchronization, music-responsive lighting, and advanced models such as LSTM. This project
demonstrates the potential of intelligent wearables in enhancing interactive and immersive experiences
in performing arts.

Keywords: Wearable technology, Machine learning, Motion recognition, RGB lighting, Smart
dance
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1. Introduction

Wearable technology has emerged as one of the fastest growing fields in HCI (Human Computer
Interaction) by (Carroll, 2009), offering new ways to extend human capabilities and enhance everyday
experiences (Pantelopoulos & Bourbakis, 2010), (Fortino et al., 2014). From smartwatches that track
health parameters to augmented reality headsets that redefine entertainment, wearables are now an
integral part of modern life. In particular, motion responsive wearable devices have shown potential
for creating immersive and engaging experiences in performance arts, sports, rehabilitation, and
gaming (Liu et al., 2018), (Benbasat & Paradiso, 2003), (Gao et al., 2014).

In performance arts, interactivity and immersion are increasingly valued, with technology
becoming a co-creative partner rather than just a background tool (Xu et al., 2016), (Dobrian &
Bevilacqua, 2003). Traditional performances often rely on lighting systems that are manually
synchronized with music or choreography.

While visually effective, such setups lack flexibility, personalization, and real-time responsiveness.
A dancer’s body movements, however, carry rich expressive information that can be captured using
wearable sensors and mapped to dynamic lighting or sound effects. This coupling of motion
recognition and actuation has been shown to enhance audience engagement and deepen the connection
between performer and performance (Bevilacqua, Schnell & Rasamimanana, 2011), (Jensenius, 2007).
Recent advances in embedded machine learning, often referred to as “TinyML,” have enabled complex
algorithms to run directly on resource-constrained devices such as microcontrollers (Warden &
Situnayake, 2019). These developments make it feasible to integrate real-time classification and
decision-making within wearable platforms, eliminating the need for external computing resources.
Devices like the ESP32-S3, combined with inertial measurement units (IMUs) such as the MPU-6050,
provide a powerful yet low-cost solution for motion recognition tasks (Shah & Patel, 2019), (Galvez
et al., 2019). Meanwhile, RGB LED systems offer lightweight, portable, and programmable means of
delivering rich visual feedback, making them particularly suited for interactive performance
environments (Tan, Lin & Chen, 2018), (Akten, 2009).

Building on these developments, this paper presents the Smart Dance Shoes, an interactive
system that integrates an ESP32-S3 microcontroller with an MPU-6050 motion sensor and RGB LED
strips. A machine learning model deployed on the embedded device classifies dance movements in real
time, triggering corresponding lighting effects. This enables performers to achieve synchronization
between movement and stage visuals without requiring extensive manual setup or external operators.
The objectives of this research can be understood through three interconnected directions. First, the
system aims to develop a real-time motion recognition framework that seamlessly synchronizes RGB
lighting effects with human movement using the ESP32-S3 microcontroller and the MPU-6050 inertial
measurement unit. By capturing acceleration and gyroscopic data from the dancer’s body in real time,
the system is designed to recognize subtle shifts in movement and translate them into dynamic lighting
responses. This objective emphasizes responsiveness and reliability, ensuring that the visual effects
remain tightly coupled with the physical performance without noticeable delay or misalignment.
Second, the project focuses on implementing machine learning algorithms capable of classifying a
variety of dance movements and mapping them to appropriate lighting patterns. Rather than relying
on pre-programmed or static effects, the system leverages embedded models to interpret motion
sequences and make context-aware decisions directly on the wearable platform. This not only enhances
the adaptability of the system across different performers and choreographies but also allows for a
higher level of personalization and creative expression. By enabling real-time classification on a
resource-constrained device, the research contributes to the growing field of TinyML and its
applications in interactive art and performance.

Finally, the research seeks to ensure that the overall system remains lightweight, efficient, and
practical for real-world use in performance environments. This involves designing a compact and
unobtrusive hardware setup that can be easily integrated into wearable form factors, while also
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optimizing the embedded algorithms for low latency and power consumption. Beyond technical
efficiency, this objective also highlights usability: the system should require minimal setup, reduce
reliance on external operators, and allow performers to intuitively engage with the technology without
disrupting the natural flow of their performance.

Together, these objectives establish a foundation for wearable technologies that not only extend
technical capabilities but also enrich the expressive possibilities of performance art, offering a pathway
toward more immersive, interactive, and human-centered experiences.

2. Literature Review

The literature on wearable and interactive technologies reveals a rich and diverse set of research
directions, yet it also highlights the need for integrated, real-time solutions tailored to performance
contexts. Broadly, prior work can be categorized into three major areas: wearable devices, machine
learning for motion recognition, and interactive performance systems.

The first body of research focuses on wearable devices, which have evolved from early health-
monitoring sensors to multifunctional platforms capable of supporting entertainment, rehabilitation,
and artistic applications. This work emphasizes portability, ergonomics, and continuous data
collection, laying the foundation for real-time human—computer interaction.

A second strand of literature examines machine learning methods for motion recognition. This area
has seen rapid growth with the availability of inertial measurement units (IMUs) and embedded
hardware. Early rule-based approaches have gradually been replaced by data driven learning models
capable of classifying complex gestures and movement patterns. Recent advancements in TinyML
further extend this capability by enabling efficient on-device inference, reducing dependency on
external computing resources.

The third research domain explores interactive performance systems, where technology is not
merely a supporting tool but an active collaborator in artistic expression. Studies in this area
demonstrate how motion, sound, and visuals can be coupled in real time to enhance audience
immersion.

However, most implementations either rely on external computing setups or lack full integration
of motion recognition with dynamic visual feedback, leaving room for systems that are lightweight,
embedded, and performer centered.

Considered collectively, these three strands of literature provide a foundation for this research
while also exposing its novelty. This work highlights how wearable technologies have matured, how
machine learning has advanced the recognition of movement, and how interactive performance
systems have demonstrated artistic potential. Yet, the intersection of these areas where portable,
embedded, and intelligent wearables drive real-time visual interaction—remains underdeveloped.
This study positions itself within this intersection, aiming to bridge the gap by proposing a fully
integrated system that combines motion recognition with synchronized RGB lighting in the context of
live dance performance.

2.1 Wearable Devices

Wearables are increasingly used in healthcare (Preece et al., 2019), fitness (Khan et al., 2010),
and entertainment applications (Zheng et al., 2018). Accelerometer and gyroscope sensors are widely
adopted due to their ability to capture fine-grained motion data. Early systems primarily targeted
fitness monitoring, focusing on step counting or gait analysis (Bao & Intille, 2004), (Ravi et al., 2005).
Later, more complex tasks such as gesture recognition and fall detection were explored (Anguita et al.,
2012), (Lara & Labrador, 2013).

Microcontrollers such as Arduino and ESP32 have been central to wearable device prototyping.
The ESP32-S3 stands out because of its dual-core architecture, low power consumption, and integrated
wireless capabilities (Espressif Systems, 2021). Similarly, the MPU-6050 sensor has been widely
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adopted in research projects due to its combination of accelerometer and gyroscope in a compact form
factor (InvenSense, 2013).

2.2 Machine Learning for Motion Recognition

Machine learning has played a pivotal role in analyzing motion data. Traditional methods, such
as decision trees and support vector machines, were initially applied to activity recognition (Anguita
et al., 2012). However, these methods struggled with complex sequential patterns. Convolutional
Neural Networks (CNNs) and Long Short-Term Memory (LSTM) models improved classification
accuracy by capturing temporal dependencies (Ordofiez & Roggen, 2016), (Hammerla et al., 2016),
(Zeng et al., 2014). More recently, attention-based models and Transformers have been proposed for
handling sequential motion data more effectively (Vaswani et al., 2017), (Chen et al., 2021).

2.3 Interactive Performance Systems

The integration of wearable devices into performance art has gained momentum. Benbasat &
Paradiso, 2003 explored expressive footwear that responded to dance movements. Choi et al., 2016
developed smart wearable systems for interactive dance performances. While these systems showcased
creativity, they often lacked portability or required external computing devices. Jiang & Yin, 2015
proposed deep learning-based recognition but relied on smartphones for processing. Our work
addresses this gap by embedding ML models directly into the shoe hardware, enabling real-time and
portable performance augmentation.

Although wearable motion recognition has seen significant advances in recent years, several
limitations remain that restrict its broader adoption in performance contexts. One of the key challenges
lies in portability. Many existing systems depend heavily on external devices, such
as smartphones or computers, to handle computation and classification tasks (Jiang & Yin, 2015).
While this approach provides access to more processing power, it undermines real-time usability on
stage, where performers require systems that are compact, self-contained, and capable of operating
without tethered devices. Another critical issue concerns responsiveness. For applications in dance and
other live performances, synchronization between body movements, music, and lighting must occur
with minimal latency. However, many current solutions introduce noticeable delays between
movement detection and system response, which diminishes the immersive quality of performances
and reduces the sense of natural interaction (Choi et al., 2016). Addressing this issue requires systems
that can process sensor data and trigger outputs in real time, even under the constraints of embedded
hardware.

Equally important is the question of usability. Existing solutions are often not tailored to the
specific needs of dancers and performers, who require wearable systems that are lightweight,
unobtrusive, and intuitive to use. Complex setup procedures, bulky hardware, or non-ergonomic
designs can interfere with a performer’s freedom of movement and distract from the creative
experience. Thus, designing systems that prioritize comfort, ease of use, and seamless integration into
performance practices remains an underexplored area. Finally, there is a clear lack of integration in
current approaches. While research has demonstrated wearable motion recognition and, separately,
dynamic lighting systems, relatively few projects have successfully combined these elements into a
single embedded platform. The absence of integrated solutions means that performers often rely on
fragmented setups, which limit the expressiveness and creative possibilities of interactive stage
technologies (Benbasat & Paradiso, 2003).

This research seeks to address these gaps by proposing a compact, embedded system that unifies
machine learning—based motion recognition with synchronized RGB lighting. By emphasizing
portability, real-time responsiveness, performer-centered usability, and holistic integration, the project
aims to advance the state of wearable technologies in performance arts and contribute to more
immersive and expressive interactive experiences.
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3. Research Methodology

The methodology for this research was designed to establish a complete pipeline for the
development and deployment of a wearable motion-responsive system. It begins with the design of the
hardware platform, where an ESP32-S3 microcontroller is integrated with an MPU-6050 motion
sensor and RGB LED strips to form a lightweight and portable solution. Once the hardware foundation
is in place, motion data was systematically collected from professional dance performances, ensuring
a balanced dataset that captured both subtle and dynamic movements across multiple dance styles.

The data collected was then preprocessed and used to train a machine learning model, with an
emphasis on optimizing both accuracy and efficiency for embedded deployment. A convolutional
neural network (CNN) was trained using the Edge Impulse platform, which provided a streamlined
environment for data handling, feature extraction, model training, and quantization. To ensure real-
time usability, the trained model was deployed directly on the ESP32-S3 microcontroller, allowing
movement recognition to be performed locally without reliance on external servers.

Finally, the system was fully integrated by mapping the classified dance movements to the
corresponding lighting effects on the RGB LED strips. This integration also ensured real-time
synchronization between performance and stage visuals but also enabled customization through a
Bluetooth-enabled web interface, allowing performers to adjust lighting patterns according to their
artistic preferences. Overall, the methodology combines hardware design, data collection, machine
learning, and system integration into a unified workflow aimed at delivering practical, responsive, and
performer-centered wearable technology.

3.1 Hardware Design

The hardware configuration for the proposed system comprised an ESP32-S3 microcontroller
(Espressif Systems, 2021), an MPU-6050 motion sensor (InvenSense, 2013), and programmable RGB
LED strips, all powered by a rechargeable Lithium Polymer (LiPo) battery. Each component was
selected carefully to ensure efficiency, compactness, and scalability of the system.

The ESP32-S3 was chosen as the primary processing unit due to its superior performance
compared to traditional microcontrollers such as Arduino. It features a dual-core Xtensa LX7 processor
with a higher clock speed, integrated WiFi, and Bluetooth Low Energy (BLE) support, which
significantly enhances wireless communication and connectivity. This allows seamless integration
with external devices and cloud-based platforms, making it suitable for real-time applications.
Additionally, the ESP32-S3 supports hardware acceleration for machine learning (ML) tasks, which is
advantageous for deploying lightweight motion recognition models directly on the device without
relying on external servers.

The MPU-6050 motion sensor was selected because of its compact design and capability to

capture six degrees of freedom (6-DoF) motion data, combining a 3-axis accelerometer and a 3-axis
gyroscope into a single module. This provides precise measurement of both linear acceleration and
angular velocity, which are critical for accurate movement tracking and classification.
Its compatibility with the I2C communication protocol also simplifies the integration process with the
ESP32-S3, reducing wiring complexity and ensuring efficient data transfer. For the visual output,
addressable RGB LED strips were employed, offering high brightness, programmability, and dynamic
color rendering. These LEDs were used to translate the detected motion patterns into synchronized
lighting effects, providing an interactive and immersive user experience.

A LiPo battery was utilized as the primary power source due to its high energy density,
lightweight design, and rechargeability, making the system portable and suitable for long duration use.
Voltage regulation modules were included to ensure stable and safe power delivery to the
microcontroller, sensor, and LED strips.
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Overall, this hardware design provides a balance between computational capability, motionsensing
accuracy, energy efficiency, and portability, forming a robust foundation for the realtime motion
recognition and interactive lighting system.

3.2 Data Collection

Motion data were systematically collected from a professional dancer performing a range of
movements to capture the dynamic variations of human activity. The performed movements included
spins, jumps, and step sequences of varying intensities and speeds. These activities were deliberately
chosen to represent both rapid and gradual motion transitions, ensuring that the dataset captured a
broad spectrum of real-world movements. The data collection process focused on capturing six degrees
of freedom (6-DoF) information from the MPU-6050 sensor, consisting of three-axis accelerometer
readings (linear acceleration) and three-axis gyroscope readings (angular velocity). To ensure
robustness and prevent bias, the dataset was balanced across all activity classes. Each class contained
a comparable number of samples, thereby avoiding the over-representation of any single activity. This
balanced approach improves the performance and generalizability of the trained models when applied
to unseen data (Bao & Intille, 2004). Data were collected at a uniform sampling frequency to maintain
temporal consistency, and preprocessing steps such as normalization and noise filtering were applied
to enhance signal quality.

The collected motion data were labeled according to predefined activity categories that
correspond to distinct dance or movement actions. Table 1 presents the activity labels and their
descriptions.

Table 1: Activity Labels for Collected Motion Data

Label Description

hinchipinchi | A signature movement style used by the professional dancer, characterized by
rhythmic and expressive gestures.

jump Vertical motion involving a sudden lift of the body from the ground, with variations
in intensity and landing style.

left-right Side-to-side stepping or body movement, capturing lateral shifts in position.

round-r Rotational spin to the right side, capturing angular velocity and circular motion
patterns.

stand Static posture representing minimal movement, primarily used as a baseline
reference class.

up-down Vertical oscillatory movement of the body, involving repeated raising and lowering
actions.

walk Forward locomotion with alternating left and right steps, representing a natural
walking gait.

By systematically labeling and balancing the dataset across these categories, the collected data
formed a reliable foundation for training and evaluating machine learning models, ensuring robust
classification across varying motion types and intensities.

3.3 Data Preprocessing and Model Training

The raw motion data collected from the MPU-6050 sensor were initially preprocessed to ensure
quality and consistency prior to model training. Preprocessing involved two key steps: normalization
and segmentation. Normalization was applied to scale the accelerometer and gyroscope readings into
a consistent range, thereby reducing the influence of sensor drift and ensuring uniform feature
distribution across samples. Segmentation was performed by dividing the continuous time-series data
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into fixed-length windows, each representing a single instance of an activity. This sliding window
approach enabled the preservation of temporal dependencies while avoiding overlap between different
motion classes.

Following preprocessing, feature extraction and classification were conducted using the Edge
Impulse Studio platform (Edge Impulse, 2023). Edge Impulse provides an integrated environment for
embedded machine learning development, allowing efficient handling of sensor data pipelines,
automated feature generation, and real-time model performance evaluation. Both time-domain features
(e.g., mean, variance, signal magnitude area) and frequency-domain features (e.g., spectral energy,
dominant frequency components) were considered to capture the dynamics of human motion.

A Convolutional Neural Network (CNN) architecture was employed for classification due to its
ability to automatically learn spatial and temporal patterns in sensor signals. CNNs have shown
superior performance in modeling complex human activity data compared to traditional machine
learning techniques (Hammerla et al., 2016). The network was trained using labeled motion segments,
with optimization techniques such as learning rate scheduling, dropout regularization, and data
augmentation applied to prevent overfitting and enhance generalization.

Furthermore, the model was optimized specifically for deployment on resource-constrained
embedded systems. Quantization and pruning techniques were applied to reduce memory footprint and
computational overhead while maintaining classification accuracy. The final trained model was
validated on held-out test data to evaluate performance metrics, including accuracy, precision, recall,
and F1-score, ensuring its robustness under real-time operational conditions (Chen et al., 2021).This
workflow established an efficient end-to-end pipeline, from raw motion data to an optimized CNN
model, enabling accurate activity recognition on the ESP32-S3 microcontroller in real-world scenarios.

3.4 System Integration

The trained Convolutional Neural Network (CNN) model was exported from the training
environment and deployed on the ESP32-S3 microcontroller using the Edge Impulse SDK. Movements
were mapped to specific lighting effects, such as color transitions for spins and flashing lights for rapid
footwork. A Bluetooth-enabled web application provided customization options for performers. This
process involved model quantization to ensure compatibility with the limited memory and
computational capacity of the microcontroller. The integration workflow began with preprocessing the
motion data from the MPU-6050 sensor to match the input format expected by the trained CNN model.
Once deployed, the model performed real-time inference directly on the device, reducing the
dependency on external servers and ensuring low-latency responses. Movements recognized by the
CNN were mapped to specific lighting effects. For instance, spins were represented by smooth color
transitions to convey fluid motion, while rapid footwork triggered flashing or strobe-like patterns to
accentuate high-energy movements. This mapping was designed not only for aesthetic appeal but also
to provide visual feedback to the performer and audience in real time.

To enhance system usability, a Bluetooth-enabled web application was developed. This application
allowed performers and choreographers to customize lighting effects without requiring hardware-level
programming. Users could adjust parameters such as color palettes, brightness, transition speed, and
effect-trigger mapping, thereby enabling creative freedom and adaptability to different performances
or dance styles. The web application’s interface was designed with simplicity in mind, ensuring that
performers without technical expertise could personalize the system to their preferences.

4. Results

The experimental procedure was divided into multiple stages to ensure a comprehensive evaluation
of the system’s functionality, accuracy, and real-world applicability. Testing was carried out both in
controlled laboratory conditions and in live performance environments.
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Unit testing was performed to validate the functionality of each individual hardware and software
component. The ESP32-S3 microcontroller was tested for reliable power management and program
execution. The MPU-6050 sensor was evaluated for its ability to accurately capture accelerometer and
gyroscope data across different movement intensities and orientations. LED strips were examined for
uniform brightness, smooth transition rendering, and response to different command signals. At the
software level, test scripts were used to confirm data preprocessing steps, sensor calibration, and CNN
model inference outputs. These unit tests ensured that each module could function independently
before integration into the larger system.

After successful unit validation, integration testing focused on the interactions between the
microcontroller, motion sensor, and lighting system. The primary objective was to verify seamless
communication and synchronization across modules. The sensor data pipeline was monitored to ensure
that raw motion signals were correctly preprocessed and fed into the CNN without data loss or
corruption. Latency was measured as the time between the physical movement and the activation of
the corresponding lighting effect. Repeated trials indicated system delays remained within the
acceptable threshold of less than 150 milliseconds, thereby ensuring that the light effects appeared
instantaneous to both performers and audience members. Additionally, stress testing was conducted
under continuous operation to ensure system stability during long-duration performances. Performance
testing was conducted to assess the accuracy and robustness of the motion recognition system. A
labeled test dataset comprising various dance movements was collected and used to evaluate the
deployed CNN model. Metrics such as accuracy, precision, recall, confusion matrices, and F1-scores
were computed to quantify recognition performance (Anguita et al., 2012).

The results highlighted the strengths of the model in identifying large, distinct movements such as
spins, while also indicating areas for improvement in differentiating subtle or overlapping motions.
Cross-validation was employed to confirm the generalizability of the trained model across multiple
performers with varying body types and movement styles. To further assess real-world usability,
performance tests were conducted under different lighting and stage conditions, ensuring that external
environmental factors did not interfere with system responsiveness.

Following laboratory validation, real-world testing was conducted during live dance performances
to evaluate the system’s practical effectiveness. This phase measured not only technical performance
but also human-centered factors such as responsiveness, usability, and dancer satisfaction. The system
successfully provided synchronized lighting feedback, enhancing the visual impact of performances
and improving audience engagement. Feedback from dancers indicated that the system did not
interfere with movement or comfort, as the hardware components were lightweight and unobtrusive.
Optimization techniques were applied to address challenges observed during live testing. Model
compression methods, such as pruning and quantization, were employed to reduce inference time
without sacrificing recognition accuracy (Han et al., 2016). Additionally, power management strategies
such as dynamic frequency scaling and sensor sleep modes were implemented to extend operational
time during extended rehearsals and performances. Overall, the real-world trials demonstrated that the
system was reliable, adaptable, and capable of delivering meaningful enhancements to live dance
experiences.

4.1 Model Overview

The neural network model was developed and trained using the Edge Impulse Studio platform.
It was implemented as a fully connected neural network (dense layers) designed for the classification
of motion-related activities, including HINCHIPINCHI, Jump, Left-Right, Round-R, Stand, Up-
Down, and Walk. The input to the model consisted of 63 extracted features derived from motion sensor
data, while the output layer contained seven classes corresponding to the defined activities.
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4.2 Neural Network Architecture
The model architecture is summarized as follows:
* Input Layer: 63 features, processed from raw sensor data through feature extraction
(e.g., spectral analysis).
* Hidden Layers:
— Dense layer with 20 neurons, activation function f(x) = max(0, x) (ReLU).
— Dense layer with 10 neurons (ReLU).
* Output Layer: 7 neurons with a softmax activation function:
e’
}’/\lzw, l=1,2,...,7
where z; is the input to the i-th output neuron and y; represents the predicted probability
for class 1.

4.3 Training Configuration
The training was performed on a CPU included 40 Training cycles (epochs) with a Learning

rate of 0.0005. It uses the Categorical cross-entropy as the Loss function and Adam (without the
learned optimizer option) as the Optimizer.
The categorical cross-entropy loss is defined as:

N C

1
L=- N YVic log(yl,c)

i=1c=1
where N is the number of samples, C is the number of classes, yi. is the ground truth label,
and yi . is the predicted probability.

4.4 Training Results

The trained model achieved an overall validation accuracy of 98.5% with a cross-entropy loss
0f'0.06. The confusion matrix (Table 2) illustrates class-wise performance. Most classes were correctly
classified with very high accuracy, with Left-Right and Walk achieving perfect classification (100%),
while Up-Down and HINCHIPINCHI exceeded 97%. Minor misclassifications were observed
between Round-R and HINCHIPINCHI (4.1%) and between Up-Down and Jump (2.1%).

4.5 Evaluation Metrics

The performance of the model was further evaluated using precision, recall, F1-score, and the
area under the ROC curve (AUC). The definitions of the metrics are given below: (TP — True Positive,
TN - True Negative, FP - False Positive, FN - False Negative)

R ~ TP + TN
WY = TP Y TN + FP + FN
b TP

recision = -5,

Recall = —F

A= TP L FN

Precision - Recall

Fl1- =2-
seore Precision + Recall
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Table 2: Confusion Matrix of the Validation set (in %)

Class HIN Jump Lefi-Right Round-R  Stand Up-Down Walk
HINCHIPINCHI 976 00 0.0 24 0.0 0.0 0.0
Jump 00 973 0.0 0.0 0.0 27 0.0
Lefi-Right 00 00 100 0.0 0.0 0.0 0.0
Round-R 41 00 0.0 0959 0.0 0.0 0.0
Stand 00 00 0.0 0.0 100 0.0 0.0
Up-Diown 00 21 0.0 0.0 0.0 9719 0.0
Walk 0.0 00 0.0 0.0 0.0 0.0 100

Table 3 presents the results achieved. The AUC reached 1.0, indicating excellent class separability.
Weighted averages for precision, recall, and F1l-score all reached 0.98, confirming that the model
performs consistently across all activity classes.

Table 3: Confusion Matrix of the Validation set (in %)

Metric Value

Accuracy 98.5%
Loss 0.06
Area under ROC curve (AUC) 1.00
Weighted Precision 0.98
Weighted Recall 0.98
Weighted F1 Score 0.98

4.6 Strengths of the Model

The trained model exhibited robust performance across multiple evaluation metrics. It achieved high
classification accuracy for all motion categories, indicating reliable recognition of diverse movement
patterns. The model’s low validation loss demonstrated strong convergence during training, ensuring
stability and generalization. Moreover, excellent class separability was observed, with an area under
the curve (AUC) of 1.0, highlighting its ability to distinguish between different motion types
effectively. Performance was well-balanced across all classes, minimizing any bias toward dominant
categories and ensuring consistent results across the dataset. These results validate the robustness of
the proposed approach and its suitability for deployment in real-time embedded systems.

5. Discussion and Conclusion

The experimental results demonstrate that the proposed system can effectively classify seven
distinct dance related movements using a lightweight fully connected neural network deployed on the
ESP32-S3. The accuracy of 92% indicates that the selected features and model architecture are well
suited for real-time motion recognition on resource-constrained hardware. Compared to existing
wearable-based motion recognition studies, which often rely on smartphones or cloud computing, the
presented system emphasizes on-device computation, thereby reducing latency and ensuring
independence from external networks.

A key observation is that most misclassifications occurred between visually and kinematically
similar movements, such as Round-R and HINCHIPINCHI. This suggests that the extracted statistical
features may not fully capture fine-grained rotational patterns, indicating potential benefits of more
advanced temporal models such as LSTMs or Transformers. Additionally, variations in movement
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speed and intensity introduced subtle inconsistencies in the sensor readings, which may have affected
classification robustness. The hardware configuration, particularly the integration of ESP32-S3 with
the MPU-6050, proved to be reliable for continuous data acquisition and processing. However, the size
and placement of the module could affect user comfort during extended dance sessions. While the
RGB LED visualization enriched the performance experience, synchronization between music and
motion remains an area for improvement. Overall, the discussion highlights both the strengths—
lightweight architecture, real-time inference, and system portability—and the limitations—dataset
diversity, feature sensitivity, and hardware ergonomics—of the current implementation. This research
presented the design and implementation of a wearable, sensor-based system for real-time dance
motion recognition and visualization. By combining an ESP32-S3 microcontroller, an MPU-6050
motion sensor, and a compact RGB LED interface, the system successfully classified seven different
movements with high accuracy while operating entirely on-device. The work demonstrates the
feasibility of deploying neural networks trained in Edge Impulse Studio on embedded hardware for
interactive performance applications.

The contributions of this study are threefold: (i) the development of a compact and portable
hardware module for motion sensing, (ii) the creation of a balanced dataset of professional dance
movements and its processing pipeline, and (iii) the deployment of a neural network that achieves
reliable classification under real time constraints. The system advances the intersection of wearable
technology, performing arts, and embedded machine learning, showcasing a novel approach to
augmenting dance performances. Future directions include expanding the dataset with multiple
dancers and genres, adopting advanced sequential models for improved recognition accuracy, and
refining hardware ergonomics for long-duration comfort. Furthermore, integrating audio-driven
synchronization and multi-shoe communication could enable enhanced interactive performances. The
outcomes of this study set the foundation for broader applications in sports training, rehabilitation, and
entertainment technologies.

6. Future Work

Future research can explore several avenues to further enhance the motion recognition and light-
synchronization system. One promising direction is the adoption of advanced models such as LSTM
or Transformer architecture, which can improve sequential motion recognition (Vaswani et al., 2017).
Expanding the dataset to include multiple dancers and diverse dance genres would enhance model
generalization and robustness. Hardware redesign could focus on creating more compact and
ergonomic modules to improve user comfort during performances. Additionally, implementing multi-
shoe synchronization would enable coordinated effects for group performances. Integrating music beat
recognition could allow the system to synchronize lighting effects with audio, creating more immersive
experiences (Essid et al., 2009). Finally, leveraging cloud-based updates and edge computing could
support continuous learning and model improvements over time (Satyanarayanan, 2017).
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