
Harshani et al/Current Scientia 28 No.02 (2025) 34-46 

 

 

*Correspondence: ravi@sjp.ac.lk  

© University of Sri Jayewardenepura 
34 

 
 

Smart Dance Shoes with Machine Learning Powered Light 

and Motion Synchronization 

 
W.G.L. Harshani, E.M.R.S. Jayaweera, D.P.G.A.H. Kulathilaka, R.M.D.D. Malinda, 

H.K.S. Theekshan and P. Ravindra S De Silva 
 

Department of Computer Science, University of Sri Jayewardenepura, Nugegoda, Sri Lanka 

 

Date Received: 23-09-2025 Date Accepted: 25-12-2025 

 

 
 

Abstract   

In the era of wearable technology, integrating machine learning into performance arts opens new 

dimensions for user interaction and creativity. This project presents the development of Smart Dance 

Shoes that utilize motion sensors and machine learning algorithms to deliver real-time RGB light 

synchronization based on dance movements. The system is built using the ESP32-S3 microcontroller 

and the MPU-6050 sensor, which capture accelerometer and gyroscope data from the dancer’s 

movements. These data inputs are processed through a machine learning model developed on Edge 

Impulse, which classifies different dance gestures such as jumps, spins, and steps and triggers 

corresponding lighting effects to enhance visual performance. The hardware is designed to be 

lightweight, portable, and user-friendly, making it suitable for dancers, performers, and fitness 

enthusiasts. Key components include RGB LED neon strips, a 3.7V LiPo battery, and Bluetooth 

integration for wireless customization. Testing covered unit, integration, and performance evaluations 

to ensure stability, low latency, and energy efficiency. Future improvements include multi-shoe 

synchronization, music-responsive lighting, and advanced models such as LSTM. This project 

demonstrates the potential of intelligent wearables in enhancing interactive and immersive experiences 

in performing arts. 

 

Keywords: Wearable technology, Machine learning, Motion recognition, RGB lighting, Smart 

dance  
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1. Introduction 

Wearable technology has emerged as one of the fastest growing fields in HCI (Human Computer 

Interaction) by (Carroll, 2009), offering new ways to extend human capabilities and enhance everyday 

experiences (Pantelopoulos & Bourbakis, 2010), (Fortino et al., 2014). From smartwatches that track 

health parameters to augmented reality headsets that redefine entertainment, wearables are now an 

integral part of modern life. In particular, motion responsive wearable devices have shown potential 

for creating immersive and engaging experiences in performance arts, sports, rehabilitation, and 

gaming (Liu et al., 2018), (Benbasat & Paradiso, 2003), (Gao et al., 2014). 

In performance arts, interactivity and immersion are increasingly valued, with technology 

becoming a co-creative partner rather than just a background tool (Xu et al., 2016), (Dobrian & 

Bevilacqua, 2003). Traditional performances often rely on lighting systems that are manually 

synchronized with music or choreography. 

While visually effective, such setups lack flexibility, personalization, and real-time responsiveness. 

A dancer’s body movements, however, carry rich expressive information that can be captured using 

wearable sensors and mapped to dynamic lighting or sound effects. This coupling of motion 

recognition and actuation has been shown to enhance audience engagement and deepen the connection 

between performer and performance (Bevilacqua, Schnell & Rasamimanana, 2011), (Jensenius, 2007). 

Recent advances in embedded machine learning, often referred to as “TinyML,” have enabled complex 

algorithms to run directly on resource-constrained devices such as microcontrollers (Warden & 

Situnayake, 2019). These developments make it feasible to integrate real-time classification and 

decision-making within wearable platforms, eliminating the need for external computing resources. 

Devices like the ESP32-S3, combined with inertial measurement units (IMUs) such as the MPU-6050, 

provide a powerful yet low-cost solution for motion recognition tasks (Shah & Patel, 2019), (Gálvez 

et al., 2019). Meanwhile, RGB LED systems offer lightweight, portable, and programmable means of 

delivering rich visual feedback, making them particularly suited for interactive performance 

environments (Tan, Lin & Chen, 2018), (Akten, 2009). 

Building on these developments, this paper presents the Smart Dance Shoes, an interactive 

system that integrates an ESP32-S3 microcontroller with an MPU-6050 motion sensor and RGB LED 

strips. A machine learning model deployed on the embedded device classifies dance movements in real 

time, triggering corresponding lighting effects. This enables performers to achieve synchronization 

between movement and stage visuals without requiring extensive manual setup or external operators. 

The objectives of this research can be understood through three interconnected directions. First, the 

system aims to develop a real-time motion recognition framework that seamlessly synchronizes RGB 

lighting effects with human movement using the ESP32-S3 microcontroller and the MPU-6050 inertial 

measurement unit. By capturing acceleration and gyroscopic data from the dancer’s body in real time, 

the system is designed to recognize subtle shifts in movement and translate them into dynamic lighting 

responses. This objective emphasizes responsiveness and reliability, ensuring that the visual effects 

remain tightly coupled with the physical performance without noticeable delay or misalignment. 

Second, the project focuses on implementing machine learning algorithms capable of classifying a 

variety of dance movements and mapping them to appropriate lighting patterns. Rather than relying 

on pre-programmed or static effects, the system leverages embedded models to interpret motion 

sequences and make context-aware decisions directly on the wearable platform. This not only enhances 

the adaptability of the system across different performers and choreographies but also allows for a 

higher level of personalization and creative expression. By enabling real-time classification on a 

resource-constrained device, the research contributes to the growing field of TinyML and its 

applications in interactive art and performance.  

Finally, the research seeks to ensure that the overall system remains lightweight, efficient, and 

practical for real-world use in performance environments. This involves designing a compact and 

unobtrusive hardware setup that can be easily integrated into wearable form factors, while also 
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optimizing the embedded algorithms for low latency and power consumption. Beyond technical 

efficiency, this objective also highlights usability: the system should require minimal setup, reduce 

reliance on external operators, and allow performers to intuitively engage with the technology without 

disrupting the natural flow of their performance. 

Together, these objectives establish a foundation for wearable technologies that not only extend 

technical capabilities but also enrich the expressive possibilities of performance art, offering a pathway 

toward more immersive, interactive, and human-centered experiences. 

 

2. Literature Review 

The literature on wearable and interactive technologies reveals a rich and diverse set of research 

directions, yet it also highlights the need for integrated, real-time solutions tailored to performance 

contexts. Broadly, prior work can be categorized into three major areas: wearable devices, machine 

learning for motion recognition, and interactive performance systems. 

The first body of research focuses on wearable devices, which have evolved from early health-

monitoring sensors to multifunctional platforms capable of supporting entertainment, rehabilitation, 

and artistic applications. This work emphasizes portability, ergonomics, and continuous data 

collection, laying the foundation for real-time human–computer interaction. 

A second strand of literature examines machine learning methods for motion recognition. This area 

has seen rapid growth with the availability of inertial measurement units (IMUs) and embedded 

hardware. Early rule-based approaches have gradually been replaced by data driven learning models 

capable of classifying complex gestures and movement patterns. Recent advancements in TinyML 

further extend this capability by enabling efficient on-device inference, reducing dependency on 

external computing resources. 

The third research domain explores interactive performance systems, where technology is not 

merely a supporting tool but an active collaborator in artistic expression. Studies in this area 

demonstrate how motion, sound, and visuals can be coupled in real time to enhance audience 

immersion.  

However, most implementations either rely on external computing setups or lack full integration 

of motion recognition with dynamic visual feedback, leaving room for systems that are lightweight, 

embedded, and performer centered. 

Considered collectively, these three strands of literature provide a foundation for this research 

while also exposing its novelty. This work highlights how wearable technologies have matured, how 

machine learning has advanced the recognition of movement, and how interactive performance 

systems have demonstrated artistic potential. Yet, the intersection of these areas where portable, 

embedded, and intelligent wearables drive real-time visual interaction—remains underdeveloped. 

This study positions itself within this intersection, aiming to bridge the gap by proposing a fully 

integrated system that combines motion recognition with synchronized RGB lighting in the context of 

live dance performance. 

 

2.1 Wearable Devices 

Wearables are increasingly used in healthcare (Preece et al., 2019), fitness (Khan et al., 2010), 

and entertainment applications (Zheng et al., 2018). Accelerometer and gyroscope sensors are widely 

adopted due to their ability to capture fine-grained motion data. Early systems primarily targeted 

fitness monitoring, focusing on step counting or gait analysis (Bao & Intille, 2004), (Ravi et al., 2005). 

Later, more complex tasks such as gesture recognition and fall detection were explored (Anguita et al., 

2012), (Lara & Labrador, 2013). 

Microcontrollers such as Arduino and ESP32 have been central to wearable device prototyping. 

The ESP32-S3 stands out because of its dual-core architecture, low power consumption, and integrated 

wireless capabilities (Espressif Systems, 2021). Similarly, the MPU-6050 sensor has been widely 

mailto:ravi@sjp.ac.lk


Harshani et al/Current Scientia 28 No.02 (2025) 34-46 

 

 

*Correspondence: ravi@sjp.ac.lk  

© University of Sri Jayewardenepura 
37 

 
 

adopted in research projects due to its combination of accelerometer and gyroscope in a compact form 

factor (InvenSense, 2013). 

 

2.2 Machine Learning for Motion Recognition 

Machine learning has played a pivotal role in analyzing motion data. Traditional methods, such 

as decision trees and support vector machines, were initially applied to activity recognition (Anguita 

et al., 2012). However, these methods struggled with complex sequential patterns. Convolutional 

Neural Networks (CNNs) and Long Short-Term Memory (LSTM) models improved classification 

accuracy by capturing temporal dependencies (Ordoñez & Roggen, 2016), (Hammerla et al., 2016), 

(Zeng et al., 2014). More recently, attention-based models and Transformers have been proposed for 

handling sequential motion data more effectively (Vaswani et al., 2017), (Chen et al., 2021). 

 

2.3 Interactive Performance Systems 

The integration of wearable devices into performance art has gained momentum. Benbasat & 

Paradiso, 2003 explored expressive footwear that responded to dance movements. Choi et al., 2016 

developed smart wearable systems for interactive dance performances. While these systems showcased 

creativity, they often lacked portability or required external computing devices. Jiang & Yin, 2015 

proposed deep learning-based recognition but relied on smartphones for processing. Our work 

addresses this gap by embedding ML models directly into the shoe hardware, enabling real-time and 

portable performance augmentation.  

Although wearable motion recognition has seen significant advances in recent years, several 

limitations remain that restrict its broader adoption in performance contexts. One of the key challenges 

lies in portability. Many existing systems depend heavily on external devices, such 

as smartphones or computers, to handle computation and classification tasks (Jiang & Yin, 2015).  

While this approach provides access to more processing power, it undermines real-time usability on 

stage, where performers require systems that are compact, self-contained, and capable of operating 

without tethered devices. Another critical issue concerns responsiveness. For applications in dance and 

other live performances, synchronization between body movements, music, and lighting must occur 

with minimal latency. However, many current solutions introduce noticeable delays between 

movement detection and system response, which diminishes the immersive quality of performances 

and reduces the sense of natural interaction (Choi et al., 2016). Addressing this issue requires systems 

that can process sensor data and trigger outputs in real time, even under the constraints of embedded 

hardware.  

Equally important is the question of usability. Existing solutions are often not tailored to the 

specific needs of dancers and performers, who require wearable systems that are lightweight, 

unobtrusive, and intuitive to use. Complex setup procedures, bulky hardware, or non-ergonomic 

designs can interfere with a performer’s freedom of movement and distract from the creative 

experience. Thus, designing systems that prioritize comfort, ease of use, and seamless integration into 

performance practices remains an underexplored area. Finally, there is a clear lack of integration in 

current approaches. While research has demonstrated wearable motion recognition and, separately, 

dynamic lighting systems, relatively few projects have successfully combined these elements into a 

single embedded platform. The absence of integrated solutions means that performers often rely on 

fragmented setups, which limit the expressiveness and creative possibilities of interactive stage 

technologies (Benbasat & Paradiso, 2003). 

This research seeks to address these gaps by proposing a compact, embedded system that unifies 

machine learning–based motion recognition with synchronized RGB lighting. By emphasizing 

portability, real-time responsiveness, performer-centered usability, and holistic integration, the project 

aims to advance the state of wearable technologies in performance arts and contribute to more 

immersive and expressive interactive experiences. 
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3. Research Methodology 

The methodology for this research was designed to establish a complete pipeline for the 

development and deployment of a wearable motion-responsive system. It begins with the design of the 

hardware platform, where an ESP32-S3 microcontroller is integrated with an MPU-6050 motion 

sensor and RGB LED strips to form a lightweight and portable solution. Once the hardware foundation 

is in place, motion data was systematically collected from professional dance performances, ensuring 

a balanced dataset that captured both subtle and dynamic movements across multiple dance styles. 

The data collected was then preprocessed and used to train a machine learning model, with an 

emphasis on optimizing both accuracy and efficiency for embedded deployment. A convolutional 

neural network (CNN) was trained using the Edge Impulse platform, which provided a streamlined 

environment for data handling, feature extraction, model training, and quantization. To ensure real-

time usability, the trained model was deployed directly on the ESP32-S3 microcontroller, allowing 

movement recognition to be performed locally without reliance on external servers. 

Finally, the system was fully integrated by mapping the classified dance movements to the 

corresponding lighting effects on the RGB LED strips. This integration also ensured real-time 

synchronization between performance and stage visuals but also enabled customization through a 

Bluetooth-enabled web interface, allowing performers to adjust lighting patterns according to their 

artistic preferences. Overall, the methodology combines hardware design, data collection, machine 

learning, and system integration into a unified workflow aimed at delivering practical, responsive, and 

performer-centered wearable technology. 

 

3.1 Hardware Design 

The hardware configuration for the proposed system comprised an ESP32-S3 microcontroller 

(Espressif Systems, 2021), an MPU-6050 motion sensor (InvenSense, 2013), and programmable RGB 

LED strips, all powered by a rechargeable Lithium Polymer (LiPo) battery. Each component was 

selected carefully to ensure efficiency, compactness, and scalability of the system. 

The ESP32-S3 was chosen as the primary processing unit due to its superior performance 

compared to traditional microcontrollers such as Arduino. It features a dual-core Xtensa LX7 processor 

with a higher clock speed, integrated WiFi, and Bluetooth Low Energy (BLE) support, which 

significantly enhances wireless communication and connectivity. This allows seamless integration 

with external devices and cloud-based platforms, making it suitable for real-time applications. 

Additionally, the ESP32-S3 supports hardware acceleration for machine learning (ML) tasks, which is 

advantageous for deploying lightweight motion recognition models directly on the device without 

relying on external servers. 

The MPU-6050 motion sensor was selected because of its compact design and capability to 

capture six degrees of freedom (6-DoF) motion data, combining a 3-axis accelerometer and a 3-axis 

gyroscope into a single module. This provides precise measurement of both linear acceleration and 

angular velocity, which are critical for accurate movement tracking and classification. 

Its compatibility with the I2C communication protocol also simplifies the integration process with the 

ESP32-S3, reducing wiring complexity and ensuring efficient data transfer. For the visual output, 

addressable RGB LED strips were employed, offering high brightness, programmability, and dynamic 

color rendering. These LEDs were used to translate the detected motion patterns into synchronized 

lighting effects, providing an interactive and immersive user experience. 

A LiPo battery was utilized as the primary power source due to its high energy density, 

lightweight design, and rechargeability, making the system portable and suitable for long duration use. 

Voltage regulation modules were included to ensure stable and safe power delivery to the 

microcontroller, sensor, and LED strips. 
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Overall, this hardware design provides a balance between computational capability, motionsensing 

accuracy, energy efficiency, and portability, forming a robust foundation for the realtime motion 

recognition and interactive lighting system. 

 

3.2 Data Collection 

Motion data were systematically collected from a professional dancer performing a range of 

movements to capture the dynamic variations of human activity. The performed movements included 

spins, jumps, and step sequences of varying intensities and speeds. These activities were deliberately 

chosen to represent both rapid and gradual motion transitions, ensuring that the dataset captured a 

broad spectrum of real-world movements. The data collection process focused on capturing six degrees 

of freedom (6-DoF) information from the MPU-6050 sensor, consisting of three-axis accelerometer 

readings (linear acceleration) and three-axis gyroscope readings (angular velocity). To ensure 

robustness and prevent bias, the dataset was balanced across all activity classes. Each class contained 

a comparable number of samples, thereby avoiding the over-representation of any single activity. This 

balanced approach improves the performance and generalizability of the trained models when applied 

to unseen data (Bao & Intille, 2004). Data were collected at a uniform sampling frequency to maintain 

temporal consistency, and preprocessing steps such as normalization and noise filtering were applied 

to enhance signal quality.  

The collected motion data were labeled according to predefined activity categories that 

correspond to distinct dance or movement actions. Table 1 presents the activity labels and their 

descriptions. 

 

Table 1: Activity Labels for Collected Motion Data 

Label Description 

hinchipinchi A signature movement style used by the professional dancer, characterized by 

rhythmic and expressive gestures. 

jump Vertical motion involving a sudden lift of the body from the ground, with variations 

in intensity and landing style. 

left-right Side-to-side stepping or body movement, capturing lateral shifts in position. 

round-r Rotational spin to the right side, capturing angular velocity and circular motion 

patterns. 

stand Static posture representing minimal movement, primarily used as a baseline 

reference class. 

up-down Vertical oscillatory movement of the body, involving repeated raising and lowering 

actions. 

walk Forward locomotion with alternating left and right steps, representing a natural 

walking gait. 

 

By systematically labeling and balancing the dataset across these categories, the collected data 
formed a reliable foundation for training and evaluating machine learning models, ensuring robust 

classification across varying motion types and intensities. 

 

3.3 Data Preprocessing and Model Training 

The raw motion data collected from the MPU-6050 sensor were initially preprocessed to ensure 

quality and consistency prior to model training. Preprocessing involved two key steps: normalization 

and segmentation. Normalization was applied to scale the accelerometer and gyroscope readings into 

a consistent range, thereby reducing the influence of sensor drift and ensuring uniform feature 

distribution across samples. Segmentation was performed by dividing the continuous time-series data 
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into fixed-length windows, each representing a single instance of an activity. This sliding window 

approach enabled the preservation of temporal dependencies while avoiding overlap between different 

motion classes. 

Following preprocessing, feature extraction and classification were conducted using the Edge 

Impulse Studio platform (Edge Impulse, 2023). Edge Impulse provides an integrated environment for 

embedded machine learning development, allowing efficient handling of sensor data pipelines, 

automated feature generation, and real-time model performance evaluation. Both time-domain features 

(e.g., mean, variance, signal magnitude area) and frequency-domain features (e.g., spectral energy, 

dominant frequency components) were considered to capture the dynamics of human motion.  

A Convolutional Neural Network (CNN) architecture was employed for classification due to its 

ability to automatically learn spatial and temporal patterns in sensor signals. CNNs have shown 

superior performance in modeling complex human activity data compared to traditional machine 

learning techniques (Hammerla et al., 2016). The network was trained using labeled motion segments, 

with optimization techniques such as learning rate scheduling, dropout regularization, and data 

augmentation applied to prevent overfitting and enhance generalization.  

Furthermore, the model was optimized specifically for deployment on resource-constrained 

embedded systems. Quantization and pruning techniques were applied to reduce memory footprint and 

computational overhead while maintaining classification accuracy. The final trained model was 

validated on held-out test data to evaluate performance metrics, including accuracy, precision, recall, 

and F1-score, ensuring its robustness under real-time operational conditions (Chen et al., 2021).This 

workflow established an efficient end-to-end pipeline, from raw motion data to an optimized CNN 

model, enabling accurate activity recognition on the ESP32-S3 microcontroller in real-world scenarios. 

 

3.4 System Integration 

The trained Convolutional Neural Network (CNN) model was exported from the training 

environment and deployed on the ESP32-S3 microcontroller using the Edge Impulse SDK. Movements 

were mapped to specific lighting effects, such as color transitions for spins and flashing lights for rapid 

footwork. A Bluetooth-enabled web application provided customization options for performers. This 

process involved model quantization to ensure compatibility with the limited memory and 

computational capacity of the microcontroller. The integration workflow began with preprocessing the 

motion data from the MPU-6050 sensor to match the input format expected by the trained CNN model. 

Once deployed, the model performed real-time inference directly on the device, reducing the 

dependency on external servers and ensuring low-latency responses. Movements recognized by the 

CNN were mapped to specific lighting effects. For instance, spins were represented by smooth color 

transitions to convey fluid motion, while rapid footwork triggered flashing or strobe-like patterns to 

accentuate high-energy movements. This mapping was designed not only for aesthetic appeal but also 

to provide visual feedback to the performer and audience in real time. 

To enhance system usability, a Bluetooth-enabled web application was developed. This application 

allowed performers and choreographers to customize lighting effects without requiring hardware-level 

programming. Users could adjust parameters such as color palettes, brightness, transition speed, and 

effect-trigger mapping, thereby enabling creative freedom and adaptability to different performances 

or dance styles. The web application’s interface was designed with simplicity in mind, ensuring that 

performers without technical expertise could personalize the system to their preferences. 

 

4. Results 

The experimental procedure was divided into multiple stages to ensure a comprehensive evaluation 

of the system’s functionality, accuracy, and real-world applicability. Testing was carried out both in 

controlled laboratory conditions and in live performance environments.  
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Unit testing was performed to validate the functionality of each individual hardware and software 

component. The ESP32-S3 microcontroller was tested for reliable power management and program 

execution. The MPU-6050 sensor was evaluated for its ability to accurately capture accelerometer and 

gyroscope data across different movement intensities and orientations. LED strips were examined for 

uniform brightness, smooth transition rendering, and response to different command signals. At the 

software level, test scripts were used to confirm data preprocessing steps, sensor calibration, and CNN 

model inference outputs. These unit tests ensured that each module could function independently 

before integration into the larger system.  

After successful unit validation, integration testing focused on the interactions between the 

microcontroller, motion sensor, and lighting system. The primary objective was to verify seamless 

communication and synchronization across modules. The sensor data pipeline was monitored to ensure 

that raw motion signals were correctly preprocessed and fed into the CNN without data loss or 

corruption. Latency was measured as the time between the physical movement and the activation of 

the corresponding lighting effect. Repeated trials indicated system delays remained within the 

acceptable threshold of less than 150 milliseconds, thereby ensuring that the light effects appeared 

instantaneous to both performers and audience members. Additionally, stress testing was conducted 

under continuous operation to ensure system stability during long-duration performances. Performance 

testing was conducted to assess the accuracy and robustness of the motion recognition system. A 

labeled test dataset comprising various dance movements was collected and used to evaluate the 

deployed CNN model. Metrics such as accuracy, precision, recall, confusion matrices, and F1-scores 

were computed to quantify recognition performance (Anguita et al., 2012). 

The results highlighted the strengths of the model in identifying large, distinct movements such as 

spins, while also indicating areas for improvement in differentiating subtle or overlapping motions. 

Cross-validation was employed to confirm the generalizability of the trained model across multiple 

performers with varying body types and movement styles. To further assess real-world usability, 

performance tests were conducted under different lighting and stage conditions, ensuring that external 

environmental factors did not interfere with system responsiveness.  

Following laboratory validation, real-world testing was conducted during live dance performances 

to evaluate the system’s practical effectiveness. This phase measured not only technical performance 

but also human-centered factors such as responsiveness, usability, and dancer satisfaction. The system 

successfully provided synchronized lighting feedback, enhancing the visual impact of performances 

and improving audience engagement. Feedback from dancers indicated that the system did not 

interfere with movement or comfort, as the hardware components were lightweight and unobtrusive. 

Optimization techniques were applied to address challenges observed during live testing. Model 

compression methods, such as pruning and quantization, were employed to reduce inference time 

without sacrificing recognition accuracy (Han et al., 2016). Additionally, power management strategies 

such as dynamic frequency scaling and sensor sleep modes were implemented to extend operational 

time during extended rehearsals and performances. Overall, the real-world trials demonstrated that the 

system was reliable, adaptable, and capable of delivering meaningful enhancements to live dance 

experiences. 

 

4.1 Model Overview 

The neural network model was developed and trained using the Edge Impulse Studio platform. 

It was implemented as a fully connected neural network (dense layers) designed for the classification 

of motion-related activities, including HINCHIPINCHI, Jump, Left-Right, Round-R, Stand, Up-

Down, and Walk. The input to the model consisted of 63 extracted features derived from motion sensor 

data, while the output layer contained seven classes corresponding to the defined activities. 
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4.2 Neural Network Architecture 

The model architecture is summarized as follows: 

• Input Layer: 63 features, processed from raw sensor data through feature extraction 

(e.g., spectral analysis). 

• Hidden Layers: 

– Dense layer with 20 neurons, activation function f(x) = max(0, x) (ReLU). 

– Dense layer with 10 neurons (ReLU). 

• Output Layer: 7 neurons with a softmax activation function: 

𝑦𝑖̂ =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗7
𝑗=1

,  𝑖 = 1,2,… ,7 

where zi is the input to the i-th output neuron and 𝑦𝑖  represents the predicted probability 

for class i. 

 

4.3 Training Configuration 

The training was performed on a CPU included 40 Training cycles (epochs) with a Learning 

rate of 0.0005. It uses the Categorical cross-entropy as the Loss function and Adam (without the 

learned optimizer option) as the Optimizer. 

The categorical cross-entropy loss is defined as:  

ℒ = −
1

𝑁
∑∑𝑦𝑖,𝑐

𝐶

𝑐=1

log(𝑦𝑖,𝑐̂)

𝑁

𝑖=1

 

where N is the number of samples, C is the number of classes, yi,c is the ground truth label, 

and yi,c is the predicted probability. 

 

4.4 Training Results 

The trained model achieved an overall validation accuracy of 98.5% with a cross-entropy loss 

of 0.06. The confusion matrix (Table 2) illustrates class-wise performance. Most classes were correctly 

classified with very high accuracy, with Left-Right and Walk achieving perfect classification (100%), 

while Up-Down and HINCHIPINCHI exceeded 97%. Minor misclassifications were observed 

between Round-R and HINCHIPINCHI (4.1%) and between Up-Down and Jump (2.1%). 

 

4.5 Evaluation Metrics 

The performance of the model was further evaluated using precision, recall, F1-score, and the 

area under the ROC curve (AUC). The definitions of the metrics are given below: (TP – True Positive, 

TN - True Negative, FP - False Positive, FN - False Negative) 

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-score = 2 ⋅
Precision ⋅ Recall

Precision + Recall
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Table 2: Confusion Matrix of the Validation set (in %) 

 

Table 3 presents the results achieved. The AUC reached 1.0, indicating excellent class separability. 

Weighted averages for precision, recall, and F1-score all reached 0.98, confirming that the model 

performs consistently across all activity classes. 

 

Table 3: Confusion Matrix of the Validation set (in %)  

 

Metric Value 

Accuracy 98.5% 

Loss 0.06 

Area under ROC curve (AUC) 1.00 

Weighted Precision 0.98 

Weighted Recall 0.98 

Weighted F1 Score 0.98 

 

 

4.6 Strengths of the Model 

The trained model exhibited robust performance across multiple evaluation metrics. It achieved high 

classification accuracy for all motion categories, indicating reliable recognition of diverse movement 

patterns. The model’s low validation loss demonstrated strong convergence during training, ensuring 

stability and generalization. Moreover, excellent class separability was observed, with an area under 

the curve (AUC) of 1.0, highlighting its ability to distinguish between different motion types 

effectively. Performance was well-balanced across all classes, minimizing any bias toward dominant 

categories and ensuring consistent results across the dataset. These results validate the robustness of 

the proposed approach and its suitability for deployment in real-time embedded systems. 

 

5. Discussion and Conclusion 

The experimental results demonstrate that the proposed system can effectively classify seven 

distinct dance related movements using a lightweight fully connected neural network deployed on the 

ESP32-S3. The accuracy of 92% indicates that the selected features and model architecture are well 

suited for real-time motion recognition on resource-constrained hardware. Compared to existing 

wearable-based motion recognition studies, which often rely on smartphones or cloud computing, the 

presented system emphasizes on-device computation, thereby reducing latency and ensuring 

independence from external networks.  

A key observation is that most misclassifications occurred between visually and kinematically 

similar movements, such as Round-R and HINCHIPINCHI. This suggests that the extracted statistical 

features may not fully capture fine-grained rotational patterns, indicating potential benefits of more 

advanced temporal models such as LSTMs or Transformers. Additionally, variations in movement 
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speed and intensity introduced subtle inconsistencies in the sensor readings, which may have affected 

classification robustness. The hardware configuration, particularly the integration of ESP32-S3 with 

the MPU-6050, proved to be reliable for continuous data acquisition and processing. However, the size 

and placement of the module could affect user comfort during extended dance sessions. While the 

RGB LED visualization enriched the performance experience, synchronization between music and 

motion remains an area for improvement. Overall, the discussion highlights both the strengths—

lightweight architecture, real-time inference, and system portability—and the limitations—dataset 

diversity, feature sensitivity, and hardware ergonomics—of the current implementation. This research 

presented the design and implementation of a wearable, sensor-based system for real-time dance 

motion recognition and visualization. By combining an ESP32-S3 microcontroller, an MPU-6050 

motion sensor, and a compact RGB LED interface, the system successfully classified seven different 

movements with high accuracy while operating entirely on-device. The work demonstrates the 

feasibility of deploying neural networks trained in Edge Impulse Studio on embedded hardware for 

interactive performance applications. 

 The contributions of this study are threefold: (i) the development of a compact and portable 

hardware module for motion sensing, (ii) the creation of a balanced dataset of professional dance 

movements and its processing pipeline, and (iii) the deployment of a neural network that achieves 

reliable classification under real time constraints. The system advances the intersection of wearable 

technology, performing arts, and embedded machine learning, showcasing a novel approach to 

augmenting dance performances. Future directions include expanding the dataset with multiple 

dancers and genres, adopting advanced sequential models for improved recognition accuracy, and 

refining hardware ergonomics for long-duration comfort. Furthermore, integrating audio-driven 

synchronization and multi-shoe communication could enable enhanced interactive performances. The 

outcomes of this study set the foundation for broader applications in sports training, rehabilitation, and 

entertainment technologies. 

 

6. Future Work 

Future research can explore several avenues to further enhance the motion recognition and light-

synchronization system. One promising direction is the adoption of advanced models such as LSTM 

or Transformer architecture, which can improve sequential motion recognition (Vaswani et al., 2017). 

Expanding the dataset to include multiple dancers and diverse dance genres would enhance model 

generalization and robustness. Hardware redesign could focus on creating more compact and 

ergonomic modules to improve user comfort during performances. Additionally, implementing multi-

shoe synchronization would enable coordinated effects for group performances. Integrating music beat 

recognition could allow the system to synchronize lighting effects with audio, creating more immersive 

experiences (Essid et al., 2009). Finally, leveraging cloud-based updates and edge computing could 

support continuous learning and model improvements over time (Satyanarayanan, 2017). 
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