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Abstract:

This study investigates the effectiveness of various robot actions in facilitating human-robot
interactions across different spatial regions. The research focuses on a social robot, 'Lily,' designed to
engage visitors at a smart home entrance. By employing human attention shift and interaction success
analysis, we examine the impact of specific robot actions, including head movements and verbal cues,
in different proximity zones (central, near peripheral, and peripheral regions). Our findings suggest
that dynamic, multimodal actions, particularly those involving body rotation and verbal cues (Action
F), are most effective in peripheral regions, where human engagement is typically lower. In contrast,
simpler actions, such as head movements with verbal behaviors (Action D), proved more successful
in central regions with closer human proximity. The study highlights the importance of adapting robot
behaviors based on spatial positioning to optimize engagement and communication effectiveness.
These insights offer valuable guidance for designing robots that can dynamically adjust their
interactions based on real-time spatial context, improving Human-Robot Interaction (HRI) in public
and domestic environments.

Keywords: Human—Robot Interaction, Social Robotics, Spatial Proxemics, Multimodal Interaction,
Attention Shift Analysis, Adaptive Robot Behavior
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1. Introduction

A social robot consists of two main features which are called robot and social interface. The social
interface encompasses all the designed features that contribute to the robot's social qualities and
capabilities, including physical appearance, communication abilities, emotional expression, social
awareness, and adaptive behaviors, which are intentionally implemented to enable the robot to engage
in appropriate and meaningful social interactions within human contexts (Hegel et al., 2009). A social
robot must exhibit contextually appropriate behaviors and possess a distinct form that enhances user
interaction (Breazeal et al., 2016). The social interface consists of social function, social forms, and
social context. These parameters can be used as designation guidelines when designing a social robot.
Forms are the elements that can be sent by social signs and signals physically. These forms play a
crucial role in enhancing human-robot communication by conveying non-verbal cues. For example,
the design of the face of the social robot is very important because the face of the social robot can be
used to show some non-verbal signs and signals. Artificial social behavior (emotions), joint attention
mechanism and module of speech recognition are part of the social functions. These components
facilitate dynamic and adaptive social interactions between humans and robots. Features of social
context conclude form and function. A robot’s application defines its operational context and
influences its functional design (Hegel et al., 2009).

Householders frequently encounter interruptions from unexpected visitors, which can disrupt daily
routines and privacy. Whether the visitor is essential (e.g., close relatives) or non-essential (e.g.,
solicitors), the householder may be occupied with urgent tasks and unable to attend the door
immediately. Consequently, there is a need for an intelligent gatekeeping system that can
autonomously manage these interactions based on the visitor's importance.

To mitigate such issues, the main intention of the study is to develop a sociable robot which could
be developed to deal with important guests and entertain them until the householder is free.
Additionally, the robot will be designed to handle unwanted guests using predefined conversational
strategies. This robotic system will furthermore lead to strengthening the security aspects of the
household by being cautious of the guests and identifying who is important.

While social robotics has advanced significantly, there is a distinct lack of research applying social
robotic principles to doorbell systems, particularly those operating in the Sinhala language.
Furthermore, few studies have integrated dynamic proxemic behavior adjustment specifically for a
gatekeeping robot in a domestic context. This study addresses this dual gap by introducing a Sinhala-
speaking robot that adapts its actions based on the visitor's spatial region.

2. Related Work

Face detection, recognition, and natural language processing (NLP) constitute the fundamental
technological triad enabling personalized human-robot interaction. These systems allow robots to
direct attention, identify individuals, and engage in conversational dialogue, thereby enhancing
responsiveness and facilitating meaningful social connections (Avila and Bailey, 2015; Datta and
Vijay, 2010; Yoshiike et al., 2010).

Practical implementations showcase these technologies in diverse applications. The Sociable Trash
Box (STB) engages children in environmental cleanup through vocal cues and expressive body
movements, encouraging interpretation and assistance (Yoshiike et al., 2010). Neel demonstrates
integrated functionality with autonomous navigation, touchscreen interaction, and social networking
capabilities, showing strong user engagement in field tests (Datta and Vijay, 2010). For domestic
settings, Jibo serves as a family assistant employing voice/face recognition and NLP to perform tasks
and tell stories (Avila and Bailey, 2015), while Mykie acts as a kitchen assistant with recipe projection
and Aido functions as a multi-purpose smart home robot for childcare and scheduling
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(https://interestingengineering.com/innovation/15-small-robots-that-will-invade-your-home-sooner-
than-you-think).

Human attention operates through complex cognitive and behavioral filters that selectively process
verbal and non-verbal cues in social settings (Carraro et al., 2017). This multi-stage process involves
perception, evaluation, and interpretation to effectively filter stimuli (Capozzi and Ristic, 2018). For
successful human-robot interaction, robots must first capture attention before initiating
communication, a process termed attention modulation involving deliberate redirection of human
focus (Hoque et al., 2012a).

Significant challenges exist in attention modulation, particularly the uncanny valley effect, where
highly human-like robotic features induce discomfort and reduce engagement (Wang et al., 2015).
Facial proportions crucially influence perceived familiarity and approachability (DiSalvo et al., 2002),
while physical posture and orientation significantly impact social acceptance levels (Kwak, 2014). Eye
contact management through both overt and covert mechanisms reinforces the importance of gaze in
social interactions (Iwasaki et al 2022; Gobel and Giesbrecht, 2020).

Spatial arrangement profoundly influences attentional responses, with closer proximity facilitating
greater focus and interaction (Frijns et al., 2023; Hall et al., 1968). Humans naturally respond to
motion-based stimuli, making animated gestures effective for attention capture, though obstructed
visual fields can impair non-verbal cue efficacy (Das et al., 2013). In such scenarios, verbal
engagement serves as an alternative attention-directing mechanism (Hoque et al., 2014).

Visual Focus of Attention (VFOA) plays a fundamental role in engagement, with robots optimizing
interaction timing by tracking gaze direction and head orientation (Das et al., 2013). Individuals
periodically shift visual focus based on cognitive load and task complexity (Masse et al., 2018),
requiring dynamic adjustment capability from robotic systems. While eye contact remains crucial for
communication, direct gaze alignment alone may be insufficient for sustained attention without
complementary behaviors like subtle head tilts and blinking (Hayward et al., 2017; Hoque et al.,
2012a). Head orientation tracking often provides a more reliable attentiveness indicator than direct
eye-tracking (Hoque et al., 2012a), with future HRI advancements needing to refine natural
communication techniques while considering personal space and societal acceptance factors (Glas et
al., 2015; Hoque et al., 2012b).

Contemporary smart home technologies, including doorbells with motion sensing and video
recording, enable remote household management but present limitations requiring active user
involvement for access verification. Unanswered calls may expose household absence, creating
security concerns. These systems necessitate physical user intervention for operation.

To address these limitations, we implemented Lily, a Sinhala-speaking sociable robot doorbell
designed to autonomously recognize guests, engage in natural interactions, and politely refuse
unwanted visitors. This research responds to the identified need for further investigation into
attentional responses in dynamic, real-world environments (Das et al., 2013), advancing toward more
intuitive and secure human-robot interaction systems.

3. Design of the Robot

This study presents a sociable robot doorbell implementing posture and positional modalities based
on Hall's proxemics theory and Integrated Attention Control (Hoque et al., 2012a). The minimalist
design optimizes efficiency, usability, and maintenance while providing aesthetic appeal through
smooth curved edges and a modern purple-white color scheme.

3.1 Minimalist Design

Minimalist design for a robot optimizes efficiency, promotes ease of use, simplifies maintenance
and repair, facilitates versatility and adaptability, and provides an appealing aesthetic. These
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advantages make a minimalist design highly desirable for a wide range of practical applications.
Therefore, in this research, we used a minimalist design for our robot.

The robot comprises three modular components: Head (165mm), Upper Body (310mm), and
Lower Body. The Head features full rotational capability and houses an LCD (50mmx76mm window),
90° webcam (28.5mm mount), and an internal speaker. The Upper Body's rotating segment (185mm)
contains an Intel RealSense sensor for distance estimation and spatial classification (intimate, personal,
social, public spaces). The Lower Body integrates rear-panel connectivity (HDMI, USB, power) and
volume control. The complete assembly stands 48cm tall with a 12.5cm diameter (Figure 1).
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Figure 1. Exterior design of the robot (3D-Printing design)

Dynamic eye expressions (Natural, Happy, Angry, Afraid, Sad, Surprise, Thinking, Listening)
were implemented using HTML/CSS/JavaScript (Figure 2), featuring natural blinking and smooth
state transitions (Figure 3) to enhance emotional communication.

00 ~~vJ 0N

v\ 00 °° 00

Figure 2. Eye expressions: (a). Natural (b). Happy (c). Angry (d). Afraid (e). Sad (f). Surprise (g).
Thinking (h). Listening
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Figure 3. Eye expression: Natural ->happy-> Sad -> Angry -> Surprise

The Upper Body (310 mm) features a rotating upper segment (185 mm) housing an Intel
RealSense camera, while the Lower Body provides rear-panel connectivity (HDMI, USB, power) and
volume control. The complete assembly stands 48 cm tall with a 12.5 cm diameter, featuring a modern
purple and white color scheme that complements its sleek, compact design.

To optimize printing time and structural integrity, the robot was segmented into smaller
components. Specific parts were adapted to house the webcam, speaker, and LCD while preserving
the original design. Assembly using nuts, bolts, and adhesive ensured a stable and durable final
structure, as illustrated in Figure 4.

Figure 4. Sliced parts of the robot
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3.2 Hardware Design and Implementation

The robot's functionality integrates multiple components: three Dynamixel servo motors, a 3.5-inch
LCD display, speaker, Rapoo C260 webcam, Intel® RealSense™ Depth Camera D456, USB 3.0 hub,
HDMI joint socket, 7.1 channel USB sound card, LM386 Audio Amplifier Module with volume
controller, and Dynamixel servo USB connector.

Motor configuration enables comprehensive movement: one motor in the Head facilitates vertical
movement (up/down), a second in the Upper Body enables horizontal head rotation (left/right), and a
third in the Lower Body controls Upper Body horizontal rotation (Figure 5). All motors connect via
Dynamixel cables to a USB connector integrated with the hub.

Figure 5. Head and Body Rotation

The Intel RealSense camera, mounted on the Lower Body, serves dual purposes: detecting
individuals and estimating distances to classify interaction zones (intimate, personal, social, or public
space), while actively tracking guest movements with coordinated head adjustments to maintain eye
contact.

Power distribution uses a 12V AC/DC adapter supplying motors and volume controller. The
LCD connects via HDMI to the I/O panel and receives power through USB. Audio routing links the
sound card adapter to the volume controller, which connects to the internal speaker. The I/O panel
consolidates power input, HDMI, USB, and volume control.

A central USB hub in the Lower Body connects the Dynamixel connector, webcam, sound card
adapter, and LCD display, while providing PC connectivity for integrated control of motors, audio,
and vision systems (Figure 6). This configuration ensures seamless power distribution, audio
functionality, and centralized control.

Webcam
Speaker

LCD Display

=~ RealSense

Servo motors

Figure 6. Hardware design
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3.3 Software Implementation and Technologies

The system utilizes Intel RealSense SDK 2.0 for human detection and distance measurement,
classifying user proximity into Hall's spatial zones (Hall et al., 1968). A YOLOvS model integrated
with OpenVINO (https://docs.openvino.ai/latest/home.html) enables robust person detection. When
individuals enter social space, the system initiates interaction.

Facial analysis employs face-api.js (https://justadudewhohacks.github.io/face-
api.js/docs/index.html) with TensorFlow.js for detection, recognition, landmark detection, expression,
age, and gender estimation. A Single Shot Multibox Detector (SSD) based on MobileNetV1 generates
128-dimensional face descriptors for known/unknown person identification.

Upon face detection, the system extracts comprehensive profile data (identity, demographics,
expressions, coordinates) and activates voice/language modules for social space entrants. Motor
control via the Dynamixel SDK adjusts head/body orientation to maintain focus based on user
coordinates.

Communication leverages a custom SNLP (Sinhala Natural Language Processing) Toolkit built
with Python, Node.js, C#, MySQL, and MongoDB. This platform supports Sinhala Named Entity
Recognition model training and dialogue flow customization, using similarity scoring for response
generation through API integration.

3.4 Behavior Sequencing of the Robot

Building upon Hoque et al.'s (Hoque et al., 2012a) classification of positional relations in human-
robot interaction, this study implements five interactive regions based on the guest's position relative
to the robot's field of view (Figure 7). The system specifically addresses central field of view (CFOV)
and near peripheral field of view (NPFOV) scenarios, divided into distinct interactive regions (Table

1.
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Figure 7. Interactive regions, interpersonal distances and viewing situations of the robot

Six predefined action groups (Table 2), employ escalating combinations of head movements,
body rotations, and verbal behaviors to capture attention. When detecting a guest, the robot executes
region-specific actions from these predefined groups.
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Table 1. Interactive regions and viewing situations of the robot

Interactive positional Angle Description
regions relations

R1 CFOV 20°  Central field of view

R2. NPFOV 20°  Left near the peripheral field near CFOV

R2gr NPFOV 20°  Right near the peripheral field near CFOV

R3L NPFOV 20°  Left near the peripheral field near OFOV

R3r NPFOV 20°  Right near the peripheral field near OFOV

Table 2. Predefined Action Groups

Action Group Predefined Action

Action A The robot moves its head to focus on the center of the detected person's
face, turning it up, down, left, or right as needed.
Action B The robot's body rotates toward the person's direction, then it moves its

head to focus on the center of the detected person's face, turning it up, down,
left, or right.

Action C The robot partially rotates its body, then rotates its head toward the person's
direction, and finally moves its head to focus on the center of the detected
person's face.

Action D Combination of Action A and verbal behaviors, where the robot speaks to
the user.

Action E Combination of Action B and verbal behaviors, where the robot speaks to
the user.

Action F Combination of Action C and verbal behaviors, where the robot speaks to
the user.

3.5 Robot's Action Execution Process

The interactive doorbell ‘Lily’ continuously monitors its environment using Intel RealSense
technology. When a person is detected, the system estimates their position and interaction region,
calculating distance to determine engagement needs. If the individual is within the Social Space, a
person-detected flag is activated, triggering facial recognition to identify if the guest is known or
unknown. Age and gender are also estimated to provide contextual cues.

Angular calculations help optimize the robot’s head and body positioning, which motor controllers
then adjust based on the guest’s location to ensure effective interaction. Engagement begins with the
activation of language modules for voice responses and speech recognition.

If the RealSense camera fails to detect the person but the webcam identifies a face in the R3 region,
the system compensates by directing motor controllers to rotate the head and body toward the guest.
This adaptability allows the robot to overcome RealSense’s limited horizontal viewing angle,
accurately capturing distance and deciding whether to engage.

When the guest leaves, the robot smoothly returns to its initial position, ready to engage the next
visitor efficiently.
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4. Experimental Protocol

The experiment aimed to identify optimal robot behaviors for attention capture across spatial
regions. The robot was positioned in an open area between Rooms A and B, a natural pathway
connecting corridors and staircases (Figure 8). We observed how the robot attracted attention and
initiated interactions, recording engagement success across interactive regions. Participants provided
qualitative feedback through post-interaction questionnaires to capture user experience perceptions.
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Figure 8. Experimental setup in the real world: The figure illustrates the spatial arrangement of
the experiment, where the robot was positioned in an open area between Room A and Room B,
serving as a common passageway. Participants approached from both the left and right sides,
allowing the robot to engage with them dynamically.

a) The layout of the experimental space, highlighting the robot’s position between Room A

and Room B.
b) A 180-degree view of the area where the interaction takes place.
c) Participants interacting with the robot in the setup.

4.1 Interpersonal Distance Allocation and Interactive Region Assignment

Interpersonal distances followed established proxemic zones (Hall et al., 1968; Neggers et al.,
2022; Weerawarna et al., 2023): intimate space (0-0.46m), personal space (0.46-1.22m), and social
space (1.22-3.7m). Angular allocations aligned with human visual attention and the webcam's 120°
field of view.

The Central Field of View (CFOV) covered 20° for high-acuity focus, while the Near Peripheral
Fields of View (NPFOV) extended 40° each side, divided into inner (20°) and outer (20°) sections.
This structure enabled smooth attention transitions:

The interactive regions correspond to specific spatial relations:
e RI (CFOV, 20°): Directly in front, enabling immediate response.
e R2L and R2R (NPFOV, inner 20°): Near central view, requiring moderate head adjustments.
e R3L and R3R (NPFOV, outer 20°): Near field boundaries, requiring larger orientation shifts.

This segmentation allowed dynamic detection and response based on user position, creating natural
human-robot interaction while minimizing abrupt movements.
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4.2 Experimental Setup and Participants

In this study, we defined five interactive regions (Table 2) and six corresponding action groups
(Table 3). When a person enters the social space, the robot executes predefined action groups tailored
for each region, with multiple possible actions available per region (Table 4). The robot’s body rotation
angle is adjusted to align with the specific region’s range. For example, body rotation is typically not
performed within the R1 region during the execution of action groups C and F. Conversely, when a
person is located in the R3L or R3R regions, estimating their distance without rotating the robot’s body
becomes difficult.

When a person transitions from the social space to the personal space to interact with the robot, it
signifies a successful human attention shift. Subsequently, the actions undertaken by the robot and any
attempts by the person to communicate with the robot contribute to a successful human-robot
interaction.

Table 3. Interactive Regions and Perfume Action Groups

Interactive Action Group
regions

R1 Action A, Action B, Action D, Action E

R2L Action A, Action B, Action C, Action D, Action E,
Action F

R2r Action A, Action B, Action C, Action D, Action E,
Action F

R3L Action B, Action C, Action E, Action F

R3r ~Action B, Action C, Action E, Action F

5. Results and Discussion

A summary of the key findings demonstrates that simple actions involving head movement and
verbal cues (Action D) were most effective in the Central Region (R1). In contrast, Peripheral Regions
(R2/R3) required complex, multimodal actions involving body rotation (Action F) to capture attention.
Overall, Action F was the most effective universal behavior, particularly in low-engagement zones.
The primary objective of this study is to identify the most effective action behaviors of the robot for
capturing attention and engaging with guests across each region, while also determining the optimal
human-robot interaction region. We recorded attention shifts of guests passing by based on six action
groups within five regions, resulting in data collected from interactions with 228 guests. Among these
interactions, successful human-robot interactions were recorded from all 228 successful human
attention shifts. Table 4 presents the distribution of successful human attention shifts for the six
different behaviors across the five interactive regions.

Table 5 Table 5 illustrates the distribution of successful human-robot interactions for the
six different behaviors across the five interactive regions. When a person transitions from the social
space to the personal space to interact with the robot, it signifies a successful human attention shift.
Subsequently, the actions undertaken by the robot and any attempts by the person to communicate with
the robot contribute to a successful human-robot interaction.
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Table 4. Distribution of the successful human attention shift of the six different behaviors
in five different interactive regions

. Action Groups

Interactive

. Action | Action | Action | Action | Action | Action | Total

regions
A B C D E F

R1 9 8 X 11 13 X 24
R2¢ 6 5 9 8 9 16 53
R2r 5 7 11 7 6 17 53
R3L X 5 13 X 7 18 25
R3r X 4 11 X 6 17 23
Total 20 29 44 26 41 68 228

Table 5. Distribution of the successful human-robot interaction of the six different behaviors
in five different interactive regions

] Action Groups
Interactive - : . " . .
regions Action | Action | Action | Action | Action | Action
A B C D E F
R1 2 1 X 11 13 X 24
R2p 0 2 2 8 9 16 37
R2r 1 1 3 7 6 17 35
R3L X 0 3 X 7 18 25
R3r X 2 2 X 6 17 23
Total 3 6 10 26 41 68 154

5.1 Analysis of Successful Human Attention Shifts

To determine the optimal robot actions across different spatial regions, we conducted
experiments focusing on attention shifts during human-robot interactions. These interactions were
analyzed in relation to spatial factors, aligning with existing research on peripheral vision and social
robotics. Observations were categorized using two nominal variables: interactive region and action
type. The five spatial regions (R1, R2L, R2R, R3L, R3R) correspond to varying degrees of human
proximity, while the six action categories (A—F) represent distinct robot behaviors aimed at engaging
passersby. To analyze these categorical relationships, we employed correspondence analysis, a
statistical method commonly used in human-robot interaction studies.

5.1.1 Contingency Table Analysis

We begin our analysis with Table 6, which shows the distribution of successful human attention
shifts across different interactive regions and action types.

In total, 228 successful attention shifts were observed. Action F garnered the most attention shifts (68),
followed by Action C (44) and Action E (41). Regions R2L and R2R had the highest number of
attention shifts (53 each), while R3R had the least (38).
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Table 6. Distribution of the successful human attention shift of the six different behaviors in five
different interactive regions

Region Action | Action | Action | Action | Action | Action | Active

A B C D E F Margin
R1 9 8 0 11 13 0 41
R2L 6 5 9 8 9 16 53
R2r 5 7 11 7 6 17 53
R3L 0 5 13 0 7 18 43
R3r 0 4 11 0 6 17 38
Active 20 | 29 | 4 | 26 | 41 68 | 228
Margin

5.1.2 Interpretation of Results

The correspondence analysis identified two key dimensions, explaining the relationships between
spatial regions and robot action types. Dimension 1, which accounts for 93.7% of the inertia (Table 7),
captures the primary interaction patterns, suggesting that a single dominant factor governs human-
robot engagement across regions. Dimension 2 contributes only 5.3% of the inertia (Table 7), implying
it captures subtler secondary patterns, potentially related to action variability within intermediate
zones. The total chi-square value of 72.011 (p < 0.001) confirms a statistically significant relationship
between robot actions and interaction success, reinforcing findings from prior research that suggest
spatial context is a primary driver of human engagement.

Table 7. Summary of Correspondence Analysis Between Region and Action Type for Human
Attention Shifts

Confidence Singular

Proportion of Inertia Value
Singular Chi Accounted Standard Correlation
Dimension Value Inertia Square Sig. for Cumulative Deviation 2
1 0.544  0.296 0.937 0.937 0.157 0.254
2 0.129  0.017 0.053 1.000 0.044
Total 0.316 72.011 O 1.000 1.000 1.000

The row point analysis highlights significant regional differences in successful human-robot
interactions. Region R1's high positive score (1.96, Table 8) in Dimension 1 suggests that it is strongly
associated with effective engagement behaviors, aligning with previous findings on attention shifts.
Regions R3L and R3R, with high negative scores (-0.97 and -0.92, respectively), indicate an inverse
relationship between these peripheral zones and certain interactive actions, meaning engagement
success is lower in these areas (Table 8). Intermediate regions R2L and R2R, while showing near-zero
scores in Dimension 1, exhibit greater variation in Dimension 2, suggesting they are context-dependent
and may be influenced by factors such as action complexity or participant movement. This variability
underscores the need for adaptive robot behaviors, particularly in transition zones where human
responses are less predictable.
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Table 8. Overview of Row Points (Regions) for Successful Human Attention Shifts in
Correspondence Analysis

Score in Dimension Contribution
of Point to Inertia of of Dimension to

Region Mass Inertia Dimension Inertia of Point

1 2 1 2 1 2
R1 0.18 1.96 0.89 0.59 2.26 6.17 1.21 0.37
R2L 0.24 0.06 -1.01 0.03 0.01 11.08 0.07 0.35
R2R 0.23 -0.09 -1.03 0.04 0.01 10.91 0.04 0.11
R3L 0.18 -0.97 1.37 0.18 0.58 15.34 9.79 1.13
R3R 0.18 -0.92 0.42 0.16 0.50 1.41 3.91 0.07
Total 1.00 1.00

The overview of column points for Successful Human Attention Shifts shows how each action
contributes to and is represented by the dimensions. Actions A and D have high positive scores in
Dimension 1 (2.34 and 1.51), aligning them strongly with R1 (Table 9). Actions C and F have negative
scores in Dimension 1 (-0.90 and -0.91), associating them with R3L and R3R. Action E has a moderate
positive score in Dimension 1 (0.59) and the highest score in Dimension 2 (1.36), suggesting it has a
unique profile across the regions. Action B has scores close to zero in Dimension 1, indicating it's less
strongly characterized by this primary dimension.

Table 9. Overview of Row Points (Regions) for Successful Human Attention Shifts in
Correspondence Analysis

Score in Dimension Contribution
of Point to Inertia of of Dimension to

Region = Mass Inertia Dimension Inertia of Point

1 2 1 2 1 2
ActionA 0.02 2.34 1.64 0.11 0.36 2.37 5.08 0.50
ActionB 0.04 0.05 -1.49 0.04 0.00 3.87 0.02 0.18
ActionC 0.06 -0.90 -0.12 0.05 0.18 0.04 7.33 0.00
ActionD 0.17 1.51 -1.45 0.36 1.29 15.84 3.96 0.73
ActionE 0.27 0.59 1.36 0.12 0.31 22.07 2.54 0.15
ActionF 044 -0.91 -0.19 0.32 1.22 0.72 7.13 0.01
Total 1 1

Most interactive action for each region:
e R1: Actions A (simple head movement) and D (head movement with verbal behavior)
e R2L and R2R: Action F (partial body rotation with head movement and verbal behaviors)
e R3L and R3R: Actions C (body rotation) and F
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Most interactive action overall: Action F, due to its high frequency (68 occurrences) and strong
association with multiple regions.

Figure 9(a) illustrates the spatial distribution of interaction regions in a two-dimensional space,
revealing distinct patterns based on proximity to the robot. The central zone (R1) is positioned in the
upper right quadrant, while the intermediate zone (R2L and R2R) occupies the lower right quadrant,
and the peripheral zone (R3L and R3R) is located in the upper left quadrant. Dimension 1 delineates
these three main zones, while Dimension 2 provides further distinction between sub-regions within the
intermediate and peripheral areas. Notably, R2L and R2R form a cluster, as do R3L and R3R, indicating
similarities within these paired regions. This distribution implies distinct profiles for different spatial
zones, suggesting that the effectiveness of robot actions likely varies based on the spatial relationship
between the robot and human. The figure underscores the critical importance of considering spatial
context in designing and implementing human-robot interactions.

Row Points Row Points
2 2
R3L R3L
o i R1, o d R1 ,
5 S R3R
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5 0 5 0
S R2L E R2L
o i o, d
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2 -1 0 1 2 2 R 0 1 2
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Figure 9. (a) Spatial Distribution of Interaction Regions in a Two-Dimensional Space for Successful
Human Attention Shifts. (b) Positioning of Robot Actions in Terms of Effectiveness for Successful
Human Attention Shifts in a Two-Dimensional Space

Figure 9(b) displays the positioning of various robot actions within the same two-dimensional
space, revealing insights into their relative effects and similarities. Actions A and D cluster in the lower
right quadrant, while Actions C and F show proximity on the left side of the plot. Action E occupies
an isolated position in the upper right quadrant, suggesting a unique profile, whereas Action B's central
location implies a more averaged effect across regions. Dimension 1 separates the actions into distinct
groups (A/D, E, C/F), while Dimension 2 further distinguishes between actions within these groups.
This distribution indicates that different actions have distinct effects on human attention and
interaction, highlighting the potential for tailoring actions to specific interaction contexts. The diverse
positioning of the actions underscores the complex and varied impact of different robot behaviors,
providing valuable insights for optimizing human-robot interactions across various spatial
configurations.

The comprehensive plot (Figure 10) combines regions and actions, providing insights into their
relationships. The proximity of R1 to Actions A and D suggests these actions are most effective in the
central region, while R3L and R3R's association with Actions C and F indicates their effectiveness in
peripheral areas. Action E's central position implies moderate effectiveness across multiple regions.
The visualization demonstrates that certain actions are more effective in specific spatial configurations,
highlighting the potential for optimizing robot behavior based on its relative position to humans. The
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plot emphasizes the importance of adaptive behavior in human-robot interaction and provides a
foundation for designing more effective interaction strategies in public spaces.

Row and Column Point Correspondence Map
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Figurel0. Comprehensive Map Combining Regions and Actions for Successful Human Attention
Shifts, Highlighting Interplay Between Spatial Context and Action Complexity

5.2 Analysis of Successful Human-Robot Interactions

In this section, we analyze successful human-robot interactions, focusing on cases where the
interaction progressed beyond an initial attention shift to meaningful engagement. Following the same
procedure as above, we explore how different robot actions contribute to engagement success across
spatial regions. This analysis provides deeper insights into how spatial positioning and behavioral
choices influence interaction outcomes, complementing our earlier findings on attention shifts.

5.2.1 Contingency Table Analysis

Table 10 presents the distribution of successful human-robot interactions across different
regions and action types, offering insights into which behaviors are most effective in initiating
engagement.

In total, 154 successful human-robot interactions were observed. Action F again garnered the
most interactions (68), followed by Action E (41) and Action D (26). Region R2L had the highest
number of interactions (37), while R1 and R3R had the least (27 each).
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Table 10. Distribution of the successful human-robot interaction of the six different behaviors in
five different interactive regions

Action Groups
Interactive Interactions by Initiator
. Person Robot Active
regions . . . . . . .
Action | Action | Action | Action | Action | Action | Margin
A B C D E F
R1 2 1 X 11 13 X 24
R2p 0 2 2 8 9 16 37
R2r 1 1 3 7 6 17 35
R3L X 0 3 X 7 18 25
R3r X 2 2 X 6 17 23
Active Margin 3 6 10 26 41 68 154

5.2.3 Interpretation of Results

The correspondence analysis identified two key dimensions, explaining how different regions and
robot actions contribute to successful human-robot interactions. Dimension 1, which accounts for
86.4% of the inertia (Table 11), primarily reflects spatial positioning effects, suggesting that the
proximity of human subjects to robot plays a major role in interaction success. Dimension 2,
contributing 6.4%, likely represents secondary factors such as action complexity or response timing.
The total chi-square value of' 53.27 (p < 0.001) confirms a strong statistical association between regions
and robot actions, reinforcing findings from previous studies on human-robot engagement. However,
compared to attention shifts, the association is slightly less pronounced, indicating that while spatiality
is crucial, other factors may influence whether an interaction progresses beyond initial attention.

Table 11. Summary of Correspondence Analysis for Successful Human-Robot Interactions Across
Interactive Regions and Action Groups

Confidence Singular
Proportion of Inertia  Value

Singular Chi Accounted Standard Correlation
Dimension Value Inertia Square Sig. for Cumulative Deviation 2
1 0.547 0299 NA 0.864 0.864 0.160 -0.045
2 0.149  0.022 NA 0.064 1.000 0.045
Total 0.346 5327 0 1.000 1.000

The overview of row points for Successful Human-Robot Interactions shows that R1 has the
highest positive score in Dimension 1 (Table 12), similar to the attention shifts analysis. R3L and R3R
have high negative scores in Dimension 1, again mirroring the attention shifts results. R2L and R2R
have scores closer to zero in Dimension 1, but show more variation in Dimension 2, suggesting some
nuanced differences in how these intermediate regions relate to successful interactions.
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Table 12. Overview of Column Points (Actions) for Successful Human-Robot Interactions in
Correspondence Analysis

Score in
Dimension Contribution
of Dimension
of Point to Inertia to
of Inertia of
Region Mass Inertia Dimension Point
1 2 1 2 1 2

ActionA 0.02 2.34 1.64 0.11 0.36 2.37 5.08 0.50

ActionB 0.04  0.05 -1.49 0.04 0.00 3.87 0.02 0.18

ActionC 0.06 -0.90 -0.12 0.05 0.18 0.04 7.33 0.00

ActionD 0.17 1.51 -1.45 0.36 1.29 15.84 396 0.73

ActionE 0.27  0.59 1.36 0.12 0.31 22.07 2.54  0.15

ActionF 044 -091 -0.19 0.32 1.22 0.72 7.13 0.01
Total 1 1

The overview of column points for Successful Human-Robot Interactions reveals that Actions
D and E have high positive scores in Dimension 1 (Table 13), associating them strongly with R1.
Action F has a high negative score in Dimension 1, associated with R3L and R3R. Actions A, B, and
C have fewer extreme scores, indicating they're less strongly characterized by the primary dimension
in terms of successful interactions.

Table 113. Overview of Row Points (Regions) for Successful Human-Robot Interactions in
Correspondence Analysis

Score in Dimension Contribution
of Point to Inertia of of Dimension to
Region Mass Inertia Dimension Inertia of Point
1 2 1 2 1 2
R1 0.18 1.96 0.89 0.59 2.26 6.17 1.21 0.37
R2L  0.24 0.06 -1.01 0.03 0.00 11.08 0.07 0.35
R2R  0.23 -0.09 -1.03 0.04 0.01 10.91 0.04 0.11
R3L  0.18 -0.97 1.37 0.18 0.58 15.34 9.79 1.13
R3R 0.18 -0.92 0.42 0.16 0.50 1.41 3.91 0.07
Total 1.00 1.00

Interpreting these results, we observe:

e Region R1 is strongly associated with Actions D and E, similar to the attention shift analysis.
e Regions R2L and R2R are again closely related and associated with Action F.
e Regions R3L and R3R are strongly associated with Actions C and F.
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e Actions A and B have less influence on successful interactions compared to attention shifts.
e Most interactive action overall: Action F, due to its high frequency (68 occurrences) and strong
association with multiple regions, particularly the peripheral ones.

Figure 11(a) (row points) illustrates the distribution of interaction regions for successful
human-robot interactions. R1 is isolated in the upper right quadrant, indicating a unique interaction
profile in the central zone. R2L and R2R are clustered in the lower center, suggesting similar
interaction patterns in these intermediate zones. R3L and R3R are positioned in the upper left quadrant,
implying comparable interaction characteristics in peripheral areas. The clear separation along
Dimension 1 highlights the significant impact of spatial proximity on interaction success, while
Dimension 2 reveals subtle differences within similar zones. This distribution emphasizes the crucial
role of spatial context in shaping human-robot interaction outcomes and suggests that robots need to
adapt their interaction strategies based on their relative position to humans.
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Figure 11. (a) Distribution of Interaction Regions for Successful Human-Robot Interactions in a Two-
Dimensional Space. (b) Positioning of Robot Actions in Terms of Effectiveness for Successful Human-
Robot Interactions in a Two-Dimensional Space.

Figure 11(b) (Column Point) displays the positioning of robot actions in terms of their
effectiveness in successful human-robot interactions. Actions C and F cluster in the left quadrant,
indicating similarity in their impact, possibly related to more complex body movements. Action E
occupies a unique position in the upper right quadrant, suggesting a distinct effect on interactions.
Actions A and D are separated along Dimension 2 but share similar positions on Dimension 1, implying
some shared characteristics despite differences. Action B's central location suggests a moderate,
balanced effect across different regions. This distribution underscores the diverse impacts of various
robot behaviors on interaction success and highlights the potential for tailoring actions to specific
spatial contexts to optimize human-robot communication.

This comprehensive map (Figure 12) combining insights from both regions and actions,
offering a holistic view of successful human-robot interactions. The proximity of R1 to Actions A and
D suggests these simpler actions are most effective in close-range interactions. R3L and R3R's
association with Actions C and F indicates that more complex, full-body actions are more successful
in peripheral zones. R2L and R2R's intermediate position, with some proximity to Action B, implies a
transition zone where moderate actions are effective. Action E's central yet isolated position suggests
a uniquely versatile action effective across multiple regions. This visualization demonstrates the
interplay between spatial context and action complexity in determining interaction success, providing
valuable insights for designing adaptive robot behaviors that can optimize interactions across various
spatial configurations in public spaces.
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Row and Column Point Correspondence Map
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Figure 12. Comprehensive Map Combining Regions and Actions for Successful Human-Robot
Interactions, Illustrating the Interplay Between Spatial Context and Action Complexity.

5.3 Comparison and Overall Conclusions

The analysis of human attention shifts and successful human-robot interactions reveals
valuable insights into the effectiveness of different robot actions across various interactive regions.

Most Interactive Actions by Region:

R1 (Central Field of View): For attention shifts, Actions A (head movement) and D (head movement
with verbal behavior) were most effective. However, for interactions, Actions D and E (head movement
with verbal behavior) were dominant. Action D, combining head movement with verbal cues, is
consistently effective in the central region. This aligns with Hall's proxemics theory, which suggests
that intimate and personal spaces require less exaggerated signaling for effective communication.

R2L and R2R (Near Peripheral Fields of View): Action F (body rotation with head movement and
verbal behaviors) proved the most effective for both attention shifts and interactions. Action F is highly
effective in near peripheral regions, where more complex, dynamic actions capture attention.

R3L and R3R (Peripheral Fields of View): Action C (body rotation) was most successful for
attention shifts, while Actions C and F proved effective for interactions. In peripheral regions, more
intricate actions like Action F (combining body rotation and verbal cues) are crucial to attract attention
and engage users.

Overall, Most Interactive Action: Action F (combining body rotation with head movement and
verbal behavior) emerges as the most interactive action overall, showing high frequencies in both
attention shifts and successful interactions. Action F proved especially effective in peripheral regions.
This supports findings by Hoque et al., who noted that peripheral attention modulation requires
deliberate, high-magnitude redirection signals. The broader motions of Action F successfully bridge
the gap in visual attention in these outer zones.
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Key Insights: Action F is consistently the most effective in capturing and maintaining human attention
across various spatial regions, especially in areas where human engagement is generally more
challenging (e.g., peripheral zones).

Simpler actions like Action D, which involves head movement with verbal cues, are more effective in
close proximity (R1), where interactions can be more direct and low-energy. These findings emphasize
the need for robots to adapt their actions based on their spatial relationship with humans, utilizing
simpler, direct actions in central zones and more complex, dynamic interactions in peripheral zones.

The consistency of these results across both attention shifts and successful interactions
strengthens our understanding that spatial proximity plays a key role in robot engagement. Future
designs of socially interactive robots should focus on real-time, adaptive behavioral algorithms that
consider spatial context to optimize interactions. By dynamically adjusting robot behaviors based on
user proximity and environmental cues, we can significantly enhance human-robot interaction
efficiency and effectiveness.

6. Conclusions

Our correspondence analysis of both human attention shifts, and successful human-robot
interactions highlights the critical role of spatial positioning in determining interaction effectiveness.
The findings indicate that robot actions should be adapted to different spatial regions to optimize
engagement. Action F (partial body rotation with head movement and verbal behaviors) proved to be
the most effective overall, particularly in peripheral regions (R2L, R2R, R3L, R3R), were broader
motion increases visibility and engagement. Conversely, simpler actions like head movements and
verbal cues (Actions A, D, and E) were most effective in the central region (R1), where close proximity
allows for more direct interaction without requiring exaggerated movements.

Multimodal actions (combining movement and speech) are particularly important in peripheral
areas, where human engagement is lower, requiring more dynamic cues to capture attention.
Meanwhile, simpler actions are preferable in central zones, where human-robot proximity allows for
more direct, low-energy interactions. The consistency between attention shift and successful
interaction results reinforces the idea that robots should dynamically adjust their engagement strategies
based on spatial positioning. These insights have significant implications for the design of interactive
robots in public spaces, suggesting that real-time behavior adaptation can enhance human-robot
communication efficiency.

These findings establish a foundation for developing socially interactive robots that can
optimize their behaviors based on spatial awareness and human responsiveness. By dynamically
adjusting actions according to user proximity, these robots can enhance both engagement effectiveness
and naturalness in public interactions.

Future research should explore the implementation of real-time adaptive behavioral algorithms,
allowing robots to dynamically adjust interactions based on spatial and user-specific cues.
Additionally, cross-cultural studies could investigate how human-robot interaction preferences vary
across different societies, influencing engagement strategies.
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