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Abstract: 

This study investigates the effectiveness of various robot actions in facilitating human-robot 

interactions across different spatial regions. The research focuses on a social robot, 'Lily,' designed to 

engage visitors at a smart home entrance. By employing human attention shift and interaction success 

analysis, we examine the impact of specific robot actions, including head movements and verbal cues, 

in different proximity zones (central, near peripheral, and peripheral regions). Our findings suggest 

that dynamic, multimodal actions, particularly those involving body rotation and verbal cues (Action 

F), are most effective in peripheral regions, where human engagement is typically lower. In contrast, 

simpler actions, such as head movements with verbal behaviors (Action D), proved more successful 

in central regions with closer human proximity. The study highlights the importance of adapting robot 

behaviors based on spatial positioning to optimize engagement and communication effectiveness. 

These insights offer valuable guidance for designing robots that can dynamically adjust their 

interactions based on real-time spatial context, improving Human-Robot Interaction (HRI) in public 

and domestic environments. 

Keywords:  Human–Robot Interaction, Social Robotics, Spatial Proxemics, Multimodal Interaction, 

Attention Shift Analysis, Adaptive Robot Behavior  
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1. Introduction 

A social robot consists of two main features which are called robot and social interface. The social 

interface encompasses all the designed features that contribute to the robot's social qualities and 

capabilities, including physical appearance, communication abilities, emotional expression, social 

awareness, and adaptive behaviors, which are intentionally implemented to enable the robot to engage 

in appropriate and meaningful social interactions within human contexts (Hegel et al., 2009). A social 

robot must exhibit contextually appropriate behaviors and possess a distinct form that enhances user 

interaction (Breazeal et al., 2016). The social interface consists of social function, social forms, and 

social context. These parameters can be used as designation guidelines when designing a social robot. 

Forms are the elements that can be sent by social signs and signals physically. These forms play a 

crucial role in enhancing human-robot communication by conveying non-verbal cues. For example, 

the design of the face of the social robot is very important because the face of the social robot can be 

used to show some non-verbal signs and signals. Artificial social behavior (emotions), joint attention 

mechanism and module of speech recognition are part of the social functions. These components 

facilitate dynamic and adaptive social interactions between humans and robots.  Features of social 

context conclude form and function. A robot’s application defines its operational context and 

influences its functional design (Hegel et al., 2009). 

Householders frequently encounter interruptions from unexpected visitors, which can disrupt daily 

routines and privacy. Whether the visitor is essential (e.g., close relatives) or non-essential (e.g., 

solicitors), the householder may be occupied with urgent tasks and unable to attend the door 

immediately. Consequently, there is a need for an intelligent gatekeeping system that can 

autonomously manage these interactions based on the visitor's importance. 

To mitigate such issues, the main intention of the study is to develop a sociable robot which could 

be developed to deal with important guests and entertain them until the householder is free. 

Additionally, the robot will be designed to handle unwanted guests using predefined conversational 

strategies. This robotic system will furthermore lead to strengthening the security aspects of the 

household by being cautious of the guests and identifying who is important. 

While social robotics has advanced significantly, there is a distinct lack of research applying social 

robotic principles to doorbell systems, particularly those operating in the Sinhala language. 

Furthermore, few studies have integrated dynamic proxemic behavior adjustment specifically for a 

gatekeeping robot in a domestic context. This study addresses this dual gap by introducing a Sinhala-

speaking robot that adapts its actions based on the visitor's spatial region. 

 

2. Related Work 

Face detection, recognition, and natural language processing (NLP) constitute the fundamental 

technological triad enabling personalized human-robot interaction. These systems allow robots to 

direct attention, identify individuals, and engage in conversational dialogue, thereby enhancing 

responsiveness and facilitating meaningful social connections (Avila and Bailey, 2015; Datta and 

Vijay, 2010; Yoshiike et al., 2010). 

Practical implementations showcase these technologies in diverse applications. The Sociable Trash 

Box (STB) engages children in environmental cleanup through vocal cues and expressive body 

movements, encouraging interpretation and assistance (Yoshiike et al., 2010). Neel demonstrates 

integrated functionality with autonomous navigation, touchscreen interaction, and social networking 

capabilities, showing strong user engagement in field tests (Datta and Vijay, 2010). For domestic 

settings, Jibo serves as a family assistant employing voice/face recognition and NLP to perform tasks 

and tell stories (Avila and Bailey, 2015), while Mykie acts as a kitchen assistant with recipe projection 

and Aido functions as a multi-purpose smart home robot for childcare and scheduling 
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(https://interestingengineering.com/innovation/15-small-robots-that-will-invade-your-home-sooner-

than-you-think). 

Human attention operates through complex cognitive and behavioral filters that selectively process 

verbal and non-verbal cues in social settings (Carraro et al., 2017). This multi-stage process involves 

perception, evaluation, and interpretation to effectively filter stimuli (Capozzi and Ristic, 2018). For 

successful human-robot interaction, robots must first capture attention before initiating 

communication, a process termed attention modulation involving deliberate redirection of human 

focus (Hoque et al., 2012a). 

Significant challenges exist in attention modulation, particularly the uncanny valley effect, where 

highly human-like robotic features induce discomfort and reduce engagement (Wang et al., 2015). 

Facial proportions crucially influence perceived familiarity and approachability (DiSalvo et al., 2002), 

while physical posture and orientation significantly impact social acceptance levels (Kwak, 2014). Eye 

contact management through both overt and covert mechanisms reinforces the importance of gaze in 

social interactions (Iwasaki et al 2022; Gobel and Giesbrecht, 2020). 

Spatial arrangement profoundly influences attentional responses, with closer proximity facilitating 

greater focus and interaction (Frijns et al., 2023; Hall et al., 1968). Humans naturally respond to 

motion-based stimuli, making animated gestures effective for attention capture, though obstructed 

visual fields can impair non-verbal cue efficacy (Das et al., 2013). In such scenarios, verbal 

engagement serves as an alternative attention-directing mechanism (Hoque et al., 2014). 

Visual Focus of Attention (VFOA) plays a fundamental role in engagement, with robots optimizing 

interaction timing by tracking gaze direction and head orientation (Das et al., 2013). Individuals 

periodically shift visual focus based on cognitive load and task complexity (Masse et al., 2018), 

requiring dynamic adjustment capability from robotic systems. While eye contact remains crucial for 

communication, direct gaze alignment alone may be insufficient for sustained attention without 

complementary behaviors like subtle head tilts and blinking (Hayward et al., 2017; Hoque et al., 

2012a). Head orientation tracking often provides a more reliable attentiveness indicator than direct 

eye-tracking (Hoque et al., 2012a), with future HRI advancements needing to refine natural 

communication techniques while considering personal space and societal acceptance factors (Glas et 

al., 2015; Hoque et al., 2012b). 

Contemporary smart home technologies, including doorbells with motion sensing and video 

recording, enable remote household management but present limitations requiring active user 

involvement for access verification. Unanswered calls may expose household absence, creating 

security concerns. These systems necessitate physical user intervention for operation. 

To address these limitations, we implemented Lily, a Sinhala-speaking sociable robot doorbell 

designed to autonomously recognize guests, engage in natural interactions, and politely refuse 

unwanted visitors. This research responds to the identified need for further investigation into 

attentional responses in dynamic, real-world environments (Das et al., 2013), advancing toward more 

intuitive and secure human-robot interaction systems. 

 

3. Design of the Robot 

This study presents a sociable robot doorbell implementing posture and positional modalities based 

on Hall's proxemics theory and Integrated Attention Control (Hoque et al., 2012a). The minimalist 

design optimizes efficiency, usability, and maintenance while providing aesthetic appeal through 

smooth curved edges and a modern purple-white color scheme. 

 

3.1 Minimalist Design 

Minimalist design for a robot optimizes efficiency, promotes ease of use, simplifies maintenance 

and repair, facilitates versatility and adaptability, and provides an appealing aesthetic. These 
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advantages make a minimalist design highly desirable for a wide range of practical applications. 

Therefore, in this research, we used a minimalist design for our robot.   

The robot comprises three modular components: Head (165mm), Upper Body (310mm), and 

Lower Body. The Head features full rotational capability and houses an LCD (50mm×76mm window), 

90° webcam (28.5mm mount), and an internal speaker. The Upper Body's rotating segment (185mm) 

contains an Intel RealSense sensor for distance estimation and spatial classification (intimate, personal, 

social, public spaces). The Lower Body integrates rear-panel connectivity (HDMI, USB, power) and 

volume control. The complete assembly stands 48cm tall with a 12.5cm diameter (Figure 1). 

 

 
Figure 1. Exterior design of the robot (3D-Printing design) 

 

Dynamic eye expressions (Natural, Happy, Angry, Afraid, Sad, Surprise, Thinking, Listening) 

were implemented using HTML/CSS/JavaScript (Figure 2), featuring natural blinking and smooth 

state transitions (Figure 3) to enhance emotional communication. 

 

 
Figure 2. Eye expressions: (a). Natural (b). Happy (c). Angry (d). Afraid (e). Sad (f). Surprise (g). 

Thinking (h). Listening 
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Figure 3. Eye expression: Natural ->happy-> Sad -> Angry -> Surprise 

 

The Upper Body (310 mm) features a rotating upper segment (185 mm) housing an Intel 

RealSense camera, while the Lower Body provides rear-panel connectivity (HDMI, USB, power) and 

volume control. The complete assembly stands 48 cm tall with a 12.5 cm diameter, featuring a modern 

purple and white color scheme that complements its sleek, compact design. 

To optimize printing time and structural integrity, the robot was segmented into smaller 

components. Specific parts were adapted to house the webcam, speaker, and LCD while preserving 

the original design. Assembly using nuts, bolts, and adhesive ensured a stable and durable final 

structure, as illustrated in Figure 4. 

 

 
Figure 4. Sliced parts of the robot 
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3.2 Hardware Design and Implementation 

The robot's functionality integrates multiple components: three Dynamixel servo motors, a 3.5-inch 

LCD display, speaker, Rapoo C260 webcam, Intel® RealSense™ Depth Camera D456, USB 3.0 hub, 

HDMI joint socket, 7.1 channel USB sound card, LM386 Audio Amplifier Module with volume 

controller, and Dynamixel servo USB connector.  
Motor configuration enables comprehensive movement: one motor in the Head facilitates vertical 

movement (up/down), a second in the Upper Body enables horizontal head rotation (left/right), and a 

third in the Lower Body controls Upper Body horizontal rotation (Figure 5). All motors connect via 

Dynamixel cables to a USB connector integrated with the hub. 

 

 
Figure 5. Head and Body Rotation 

 

The Intel RealSense camera, mounted on the Lower Body, serves dual purposes: detecting 

individuals and estimating distances to classify interaction zones (intimate, personal, social, or public 

space), while actively tracking guest movements with coordinated head adjustments to maintain eye 

contact. 

Power distribution uses a 12V AC/DC adapter supplying motors and volume controller. The 

LCD connects via HDMI to the I/O panel and receives power through USB. Audio routing links the 

sound card adapter to the volume controller, which connects to the internal speaker. The I/O panel 

consolidates power input, HDMI, USB, and volume control. 

A central USB hub in the Lower Body connects the Dynamixel connector, webcam, sound card 

adapter, and LCD display, while providing PC connectivity for integrated control of motors, audio, 

and vision systems (Figure 6). This configuration ensures seamless power distribution, audio 

functionality, and centralized control. 

 

 
Figure 6. Hardware design 
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3.3 Software Implementation and Technologies 

The system utilizes Intel RealSense SDK 2.0 for human detection and distance measurement, 

classifying user proximity into Hall's spatial zones (Hall et al., 1968). A YOLOv8 model integrated 

with OpenVINO (https://docs.openvino.ai/latest/home.html) enables robust person detection. When 

individuals enter social space, the system initiates interaction. 

Facial analysis employs face-api.js (https://justadudewhohacks.github.io/face-

api.js/docs/index.html) with TensorFlow.js for detection, recognition, landmark detection, expression, 

age, and gender estimation. A Single Shot Multibox Detector (SSD) based on MobileNetV1 generates 

128-dimensional face descriptors for known/unknown person identification. 

Upon face detection, the system extracts comprehensive profile data (identity, demographics, 

expressions, coordinates) and activates voice/language modules for social space entrants. Motor 

control via the Dynamixel SDK adjusts head/body orientation to maintain focus based on user 

coordinates. 

Communication leverages a custom SNLP (Sinhala Natural Language Processing) Toolkit built 

with Python, Node.js, C#, MySQL, and MongoDB. This platform supports Sinhala Named Entity 

Recognition model training and dialogue flow customization, using similarity scoring for response 

generation through API integration. 

 

3.4 Behavior Sequencing of the Robot 

Building upon Hoque et al.'s (Hoque et al., 2012a) classification of positional relations in human-

robot interaction, this study implements five interactive regions based on the guest's position relative 

to the robot's field of view (Figure 7). The system specifically addresses central field of view (CFOV) 

and near peripheral field of view (NPFOV) scenarios, divided into distinct interactive regions (Table 

1). 

 

Figure 7. Interactive regions, interpersonal distances and viewing situations of the robot 

 

Six predefined action groups (Table 2), employ escalating combinations of head movements, 

body rotations, and verbal behaviors to capture attention. When detecting a guest, the robot executes 

region-specific actions from these predefined groups. 
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Table 1. Interactive regions and viewing situations of the robot 

Interactive 

regions 

positional 

relations 

Angle Description 

R1 CFOV 200 Central field of view 

R2L NPFOV 200 Left near the peripheral field near CFOV 

R2R NPFOV 200 Right near the peripheral field near CFOV 

R3L NPFOV 200 Left near the peripheral field near OFOV 

R3R NPFOV 200 Right near the peripheral field near OFOV 

 

Table 2. Predefined Action Groups 

Action Group Predefined Action 

Action A The robot moves its head to focus on the center of the detected person's 

face, turning it up, down, left, or right as needed. 

Action B The robot's body rotates toward the person's direction, then it moves its 

head to focus on the center of the detected person's face, turning it up, down, 

left, or right. 

Action C The robot partially rotates its body, then rotates its head toward the person's 

direction, and finally moves its head to focus on the center of the detected 

person's face. 

Action D Combination of Action A and verbal behaviors, where the robot speaks to 

the user. 

Action E Combination of Action B and verbal behaviors, where the robot speaks to 

the user. 

Action F Combination of Action C and verbal behaviors, where the robot speaks to 

the user. 

 

 

3.5 Robot's Action Execution Process  

The interactive doorbell ‘Lily’ continuously monitors its environment using Intel RealSense 

technology. When a person is detected, the system estimates their position and interaction region, 

calculating distance to determine engagement needs. If the individual is within the Social Space, a 

person-detected flag is activated, triggering facial recognition to identify if the guest is known or 

unknown. Age and gender are also estimated to provide contextual cues. 

Angular calculations help optimize the robot’s head and body positioning, which motor controllers 

then adjust based on the guest’s location to ensure effective interaction. Engagement begins with the 

activation of language modules for voice responses and speech recognition. 

If the RealSense camera fails to detect the person but the webcam identifies a face in the R3 region, 

the system compensates by directing motor controllers to rotate the head and body toward the guest. 

This adaptability allows the robot to overcome RealSense’s limited horizontal viewing angle, 

accurately capturing distance and deciding whether to engage. 

When the guest leaves, the robot smoothly returns to its initial position, ready to engage the next 

visitor efficiently. 
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4. Experimental Protocol 

The experiment aimed to identify optimal robot behaviors for attention capture across spatial 

regions. The robot was positioned in an open area between Rooms A and B, a natural pathway 

connecting corridors and staircases (Figure 8). We observed how the robot attracted attention and 

initiated interactions, recording engagement success across interactive regions. Participants provided 

qualitative feedback through post-interaction questionnaires to capture user experience perceptions. 

 

 

Figure 8. Experimental setup in the real world: The figure illustrates the spatial arrangement of 

the experiment, where the robot was positioned in an open area between Room A and Room B, 

serving as a common passageway. Participants approached from both the left and right sides, 

allowing the robot to engage with them dynamically. 

a) The layout of the experimental space, highlighting the robot’s position between Room A 

and Room B.  

b) A 180-degree view of the area where the interaction takes place. 

c) Participants interacting with the robot in the setup. 

 

4.1 Interpersonal Distance Allocation and Interactive Region Assignment 

Interpersonal distances followed established proxemic zones (Hall et al., 1968; Neggers et al., 

2022; Weerawarna et al., 2023): intimate space (0-0.46m), personal space (0.46-1.22m), and social 

space (1.22-3.7m). Angular allocations aligned with human visual attention and the webcam's 120° 

field of view. 

The Central Field of View (CFOV) covered 20° for high-acuity focus, while the Near Peripheral 

Fields of View (NPFOV) extended 40° each side, divided into inner (20°) and outer (20°) sections. 

This structure enabled smooth attention transitions: 

The interactive regions correspond to specific spatial relations: 

• R1 (CFOV, 20°): Directly in front, enabling immediate response. 

• R2L and R2R (NPFOV, inner 20°): Near central view, requiring moderate head adjustments. 

• R3L and R3R (NPFOV, outer 20°): Near field boundaries, requiring larger orientation shifts. 

This segmentation allowed dynamic detection and response based on user position, creating natural 

human-robot interaction while minimizing abrupt movements. 
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4.2 Experimental Setup and Participants 

In this study, we defined five interactive regions (Table 2) and six corresponding action groups 

(Table 3). When a person enters the social space, the robot executes predefined action groups tailored 

for each region, with multiple possible actions available per region (Table 4). The robot’s body rotation 

angle is adjusted to align with the specific region’s range. For example, body rotation is typically not 

performed within the R1 region during the execution of action groups C and F. Conversely, when a 

person is located in the R3L or R3R regions, estimating their distance without rotating the robot’s body 

becomes difficult. 

When a person transitions from the social space to the personal space to interact with the robot, it 

signifies a successful human attention shift. Subsequently, the actions undertaken by the robot and any 

attempts by the person to communicate with the robot contribute to a successful human-robot 

interaction. 

 

                  Table 3. Interactive Regions and Perfume Action Groups 

Interactive 

regions 

Action Group 

R1 Action A, Action B, Action D, Action E 

R2L Action A, Action B, Action C, Action D, Action E, 

Action F 

R2R Action A, Action B, Action C, Action D, Action E, 

Action F 

R3L Action B, Action C, Action E, Action F 

R3R Action B, Action C, Action E, Action F 

 

5. Results and Discussion 

A summary of the key findings demonstrates that simple actions involving head movement and 

verbal cues (Action D) were most effective in the Central Region (R1). In contrast, Peripheral Regions 

(R2/R3) required complex, multimodal actions involving body rotation (Action F) to capture attention. 

Overall, Action F was the most effective universal behavior, particularly in low-engagement zones. 

The primary objective of this study is to identify the most effective action behaviors of the robot for 

capturing attention and engaging with guests across each region, while also determining the optimal 

human-robot interaction region. We recorded attention shifts of guests passing by based on six action 

groups within five regions, resulting in data collected from interactions with 228 guests. Among these 

interactions, successful human-robot interactions were recorded from all 228 successful human 

attention shifts. Table 4 presents the distribution of successful human attention shifts for the six 

different behaviors across the five interactive regions.  

              Table 5 Table 5 illustrates the distribution of successful human-robot interactions for the 

six different behaviors across the five interactive regions. When a person transitions from the social 

space to the personal space to interact with the robot, it signifies a successful human attention shift. 

Subsequently, the actions undertaken by the robot and any attempts by the person to communicate with 

the robot contribute to a successful human-robot interaction. 
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               Table 4. Distribution of the successful human attention shift of the six different behaviors   

                in five different interactive regions 

Interactive 

regions 

Action Groups 

Action 

A 

Action 

B 

Action 

C 

Action 

D 

Action 

E 

Action 

F 

Total 

R1 9 8 X 11 13 X 24 

R2L 6 5 9 8 9 16 53 

R2R 5 7 11 7 6 17 53 

R3L X 5 13 X 7 18 25 

R3R X 4 11 X 6 17 23 

Total 20 29 44 26 41 68 228 

 

              Table 5. Distribution of the successful human-robot interaction of the six different behaviors     

               in five different interactive regions 

Interactive 

regions 

Action Groups 

Action 

A 

Action 

B 

Action 

C 

Action 

D 

Action 

E 

Action 

F 

 

R1 2 1 X 11 13 X 24 

R2L 0 2 2 8 9 16 37 

R2R 1 1 3 7 6 17 35 

R3L X 0 3 X 7 18 25 

R3R X 2 2 X 6 17 23 

Total 3 6 10 26 41 68 154 

 

5.1 Analysis of Successful Human Attention Shifts 

To determine the optimal robot actions across different spatial regions, we conducted 

experiments focusing on attention shifts during human-robot interactions. These interactions were 

analyzed in relation to spatial factors, aligning with existing research on peripheral vision and social 

robotics. Observations were categorized using two nominal variables: interactive region and action 

type. The five spatial regions (R1, R2L, R2R, R3L, R3R) correspond to varying degrees of human 

proximity, while the six action categories (A–F) represent distinct robot behaviors aimed at engaging 

passersby. To analyze these categorical relationships, we employed correspondence analysis, a 

statistical method commonly used in human-robot interaction studies. 

 

5.1.1 Contingency Table Analysis 

We begin our analysis with Table 6, which shows the distribution of successful human attention 

shifts across different interactive regions and action types. 

In total, 228 successful attention shifts were observed. Action F garnered the most attention shifts (68), 

followed by Action C (44) and Action E (41). Regions R2L and R2R had the highest number of 

attention shifts (53 each), while R3R had the least (38). 
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    Table 6. Distribution of the successful human attention shift of the six different behaviors in five  

    different interactive regions 

Region Action 

A 

Action 

B 

Action 

C 

Action 

D 

Action 

E 

Action 

F 

Active 

Margin 

R1 9 8 0 11 13 0 41 

R2L 6 5 9 8 9 16 53 

R2R 5 7 11 7 6 17 53 

R3L 0 5 13 0 7 18 43 

R3R 0 4 11 0 6 17 38 

Active 

Margin 
20 29 44 26 41 68 

228 

 

5.1.2 Interpretation of Results 

The correspondence analysis identified two key dimensions, explaining the relationships between 

spatial regions and robot action types. Dimension 1, which accounts for 93.7% of the inertia (Table 7), 

captures the primary interaction patterns, suggesting that a single dominant factor governs human-

robot engagement across regions. Dimension 2 contributes only 5.3% of the inertia (Table 7), implying 

it captures subtler secondary patterns, potentially related to action variability within intermediate 

zones. The total chi-square value of 72.011 (p < 0.001) confirms a statistically significant relationship 

between robot actions and interaction success, reinforcing findings from prior research that suggest 

spatial context is a primary driver of human engagement. 

Table 7. Summary of Correspondence Analysis Between Region and Action Type for Human 

Attention Shifts 

     
Proportion of Inertia 

Confidence Singular 

Value 

Dimension 

Singular 

Value Inertia 

Chi 

Square Sig. 

Accounted 

for Cumulative 

Standard 

Deviation 

Correlation 

2 

1 0.544 0.296 
  

0.937 0.937 0.157 0.254 

2 0.129 0.017 
  

0.053 1.000 0.044 
 

Total 
 

0.316 72.011 0 1.000 1.000 1.000 
 

The row point analysis highlights significant regional differences in successful human-robot 

interactions. Region R1's high positive score (1.96, Table 8) in Dimension 1 suggests that it is strongly 

associated with effective engagement behaviors, aligning with previous findings on attention shifts. 

Regions R3L and R3R, with high negative scores (-0.97 and -0.92, respectively), indicate an inverse 

relationship between these peripheral zones and certain interactive actions, meaning engagement 

success is lower in these areas (Table 8). Intermediate regions R2L and R2R, while showing near-zero 

scores in Dimension 1, exhibit greater variation in Dimension 2, suggesting they are context-dependent 

and may be influenced by factors such as action complexity or participant movement. This variability 

underscores the need for adaptive robot behaviors, particularly in transition zones where human 

responses are less predictable. 
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Table 8. Overview of Row Points (Regions) for Successful Human Attention Shifts in 

Correspondence Analysis 

  Score in Dimension  Contribution 

Region Mass   Inertia 

of Point to Inertia of  

Dimension 

of Dimension to  

Inertia of Point 

  1 2  1 2 1 2 

R1 0.18 1.96 0.89 0.59 2.26 6.17 1.21 0.37 

R2L 0.24 0.06 -1.01 0.03 0.01 11.08 0.07 0.35 

R2R 0.23 -0.09 -1.03 0.04 0.01 10.91 0.04 0.11 

R3L 0.18 -0.97 1.37 0.18 0.58 15.34 9.79 1.13 

R3R 0.18 -0.92 0.42 0.16 0.50 1.41 3.91 0.07 

Total 1.00   1.00     
 

The overview of column points for Successful Human Attention Shifts shows how each action 

contributes to and is represented by the dimensions. Actions A and D have high positive scores in 

Dimension 1 (2.34 and 1.51), aligning them strongly with R1 (Table 9). Actions C and F have negative 

scores in Dimension 1 (-0.90 and -0.91), associating them with R3L and R3R. Action E has a moderate 

positive score in Dimension 1 (0.59) and the highest score in Dimension 2 (1.36), suggesting it has a 

unique profile across the regions. Action B has scores close to zero in Dimension 1, indicating it's less 

strongly characterized by this primary dimension. 

Table 9. Overview of Row Points (Regions) for Successful Human Attention Shifts in 

Correspondence Analysis 

  Score in Dimension  Contribution 

Region Mass   Inertia 

of Point to Inertia of  

Dimension 

of Dimension to  

Inertia of Point 

  1 2  1 2 1 2 

Action A 0.02 2.34 1.64 0.11 0.36 2.37 5.08 0.50 

Action B 0.04 0.05 -1.49 0.04 0.00 3.87 0.02 0.18 

Action C 0.06 -0.90 -0.12 0.05 0.18 0.04 7.33 0.00 

Action D 0.17 1.51 -1.45 0.36 1.29 15.84 3.96 0.73 

Action E 0.27 0.59 1.36 0.12 0.31 22.07 2.54 0.15 

Action F 0.44 -0.91 -0.19 0.32 1.22 0.72 7.13 0.01 

Total 1   1     
 

Most interactive action for each region: 

• R1: Actions A (simple head movement) and D (head movement with verbal behavior) 

• R2L and R2R: Action F (partial body rotation with head movement and verbal behaviors) 

• R3L and R3R: Actions C (body rotation) and F 
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Most interactive action overall: Action F, due to its high frequency (68 occurrences) and strong 

association with multiple regions. 

 

Figure 9(a) illustrates the spatial distribution of interaction regions in a two-dimensional space, 

revealing distinct patterns based on proximity to the robot. The central zone (R1) is positioned in the 

upper right quadrant, while the intermediate zone (R2L and R2R) occupies the lower right quadrant, 

and the peripheral zone (R3L and R3R) is located in the upper left quadrant. Dimension 1 delineates 

these three main zones, while Dimension 2 provides further distinction between sub-regions within the 

intermediate and peripheral areas. Notably, R2L and R2R form a cluster, as do R3L and R3R, indicating 

similarities within these paired regions. This distribution implies distinct profiles for different spatial 

zones, suggesting that the effectiveness of robot actions likely varies based on the spatial relationship 

between the robot and human. The figure underscores the critical importance of considering spatial 

context in designing and implementing human-robot interactions. 

 

 

 

 

 

 

 

 

 

 

Figure 9. (a) Spatial Distribution of Interaction Regions in a Two-Dimensional Space for Successful 

Human Attention Shifts. (b) Positioning of Robot Actions in Terms of Effectiveness for Successful 

Human Attention Shifts in a Two-Dimensional Space 

Figure 9(b) displays the positioning of various robot actions within the same two-dimensional 

space, revealing insights into their relative effects and similarities. Actions A and D cluster in the lower 

right quadrant, while Actions C and F show proximity on the left side of the plot. Action E occupies 

an isolated position in the upper right quadrant, suggesting a unique profile, whereas Action B's central 

location implies a more averaged effect across regions. Dimension 1 separates the actions into distinct 

groups (A/D, E, C/F), while Dimension 2 further distinguishes between actions within these groups. 

This distribution indicates that different actions have distinct effects on human attention and 

interaction, highlighting the potential for tailoring actions to specific interaction contexts. The diverse 

positioning of the actions underscores the complex and varied impact of different robot behaviors, 

providing valuable insights for optimizing human-robot interactions across various spatial 

configurations. 

The comprehensive plot (Figure 10) combines regions and actions, providing insights into their 

relationships. The proximity of R1 to Actions A and D suggests these actions are most effective in the 

central region, while R3L and R3R's association with Actions C and F indicates their effectiveness in 

peripheral areas. Action E's central position implies moderate effectiveness across multiple regions. 

The visualization demonstrates that certain actions are more effective in specific spatial configurations, 

highlighting the potential for optimizing robot behavior based on its relative position to humans. The 
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plot emphasizes the importance of adaptive behavior in human-robot interaction and provides a 

foundation for designing more effective interaction strategies in public spaces. 

. 

 

 

 

 

 

 

 

 

 

 

 

Figure10. Comprehensive Map Combining Regions and Actions for Successful Human Attention 

Shifts, Highlighting Interplay Between Spatial Context and Action Complexity 

 

5.2 Analysis of Successful Human-Robot Interactions 

In this section, we analyze successful human-robot interactions, focusing on cases where the 

interaction progressed beyond an initial attention shift to meaningful engagement. Following the same 

procedure as above, we explore how different robot actions contribute to engagement success across 

spatial regions. This analysis provides deeper insights into how spatial positioning and behavioral 

choices influence interaction outcomes, complementing our earlier findings on attention shifts. 

5.2.1 Contingency Table Analysis 

Table 10 presents the distribution of successful human-robot interactions across different 

regions and action types, offering insights into which behaviors are most effective in initiating 

engagement.  

In total, 154 successful human-robot interactions were observed. Action F again garnered the 

most interactions (68), followed by Action E (41) and Action D (26). Region R2L had the highest 

number of interactions (37), while R1 and R3R had the least (27 each). 
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        Table 10. Distribution of the successful human-robot interaction of the six different behaviors in  

        five different interactive regions 

 

 

 

 

 

 

 

 

5.2.3 Interpretation of Results 

The correspondence analysis identified two key dimensions, explaining how different regions and 

robot actions contribute to successful human-robot interactions. Dimension 1, which accounts for 

86.4% of the inertia (Table 11), primarily reflects spatial positioning effects, suggesting that the 

proximity of human subjects to robot plays a major role in interaction success. Dimension 2, 

contributing 6.4%, likely represents secondary factors such as action complexity or response timing. 

The total chi-square value of 53.27 (p < 0.001) confirms a strong statistical association between regions 

and robot actions, reinforcing findings from previous studies on human-robot engagement. However, 

compared to attention shifts, the association is slightly less pronounced, indicating that while spatiality 

is crucial, other factors may influence whether an interaction progresses beyond initial attention. 

 

Table 11. Summary of Correspondence Analysis for Successful Human-Robot Interactions Across 

Interactive Regions and Action Groups 

    

 

 
Proportion of Inertia 

Confidence Singular 

Value 

Dimension 

Singular 

Value Inertia 

Chi 

Square 

 

Sig. 

Accounted 

for Cumulative 

Standard 

Deviation 

Correlation 

2 

1 0.547 0.299 NA  
 

0.864 0.864 0.160 -0.045 

2 0.149 0.022 NA  
 

0.064 1.000 0.045 
 

Total 
 

0.346 53.27  0 1.000 1.000 
  

 

The overview of row points for Successful Human-Robot Interactions shows that R1 has the 

highest positive score in Dimension 1 (Table 12), similar to the attention shifts analysis. R3L and R3R 

have high negative scores in Dimension 1, again mirroring the attention shifts results. R2L and R2R 

have scores closer to zero in Dimension 1, but show more variation in Dimension 2, suggesting some 

nuanced differences in how these intermediate regions relate to successful interactions. 

Interactive 

regions 

Action Groups 

Interactions by Initiator 

Active 

Margin 

Person Robot 

Action 

A 

Action 

B 

Action 

C 

Action 

D 

Action 

E 

Action 

F 

R1 2 1 X 11 13 X 24 

R2L 0 2 2 8 9 16 37 

R2R 1 1 3 7 6 17 35 

R3L X 0 3 X 7 18 25 

R3R X 2 2 X 6 17 23 

Active Margin 3 6 10 26 41 68 154 
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Table 12. Overview of Column Points (Actions) for Successful Human-Robot Interactions in 

Correspondence Analysis 

  

Score in 

Dimension  Contribution 

Region Mass   Inertia 

of Point to Inertia 

of  

Dimension 

of Dimension 

to  

Inertia of 

Point 

  1 2  1 2 1 2 

Action A 0.02 2.34 1.64 0.11 0.36 2.37 5.08 0.50 

Action B 0.04 0.05 -1.49 0.04 0.00 3.87 0.02 0.18 

Action C 0.06 -0.90 -0.12 0.05 0.18 0.04 7.33 0.00 

Action D 0.17 1.51 -1.45 0.36 1.29 15.84 3.96 0.73 

Action E 0.27 0.59 1.36 0.12 0.31 22.07 2.54 0.15 

Action F 0.44 -0.91 -0.19 0.32 1.22 0.72 7.13 0.01 

Total 1   1     
 

The overview of column points for Successful Human-Robot Interactions reveals that Actions 

D and E have high positive scores in Dimension 1 (Table 13), associating them strongly with R1. 

Action F has a high negative score in Dimension 1, associated with R3L and R3R. Actions A, B, and 

C have fewer extreme scores, indicating they're less strongly characterized by the primary dimension 

in terms of successful interactions. 

 

Table 113. Overview of Row Points (Regions) for Successful Human-Robot Interactions in 

Correspondence Analysis 

 

  Score in Dimension  Contribution 

Region Mass   Inertia 

of Point to Inertia of  

Dimension 

of Dimension to  

Inertia of Point 

  1 2  1 2 1 2 

R1 0.18 1.96 0.89 0.59 2.26 6.17 1.21 0.37 

R2L 0.24 0.06 -1.01 0.03 0.00 11.08 0.07 0.35 

R2R 0.23 -0.09 -1.03 0.04 0.01 10.91 0.04 0.11 

R3L 0.18 -0.97 1.37 0.18 0.58 15.34 9.79 1.13 

R3R 0.18 -0.92 0.42 0.16 0.50 1.41 3.91 0.07 

Total 1.00   1.00     
 

Interpreting these results, we observe: 

• Region R1 is strongly associated with Actions D and E, similar to the attention shift analysis. 

• Regions R2L and R2R are again closely related and associated with Action F. 

• Regions R3L and R3R are strongly associated with Actions C and F. 
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• Actions A and B have less influence on successful interactions compared to attention shifts. 

• Most interactive action overall: Action F, due to its high frequency (68 occurrences) and strong 

association with multiple regions, particularly the peripheral ones. 

Figure 11(a) (row points) illustrates the distribution of interaction regions for successful 

human-robot interactions. R1 is isolated in the upper right quadrant, indicating a unique interaction 

profile in the central zone. R2L and R2R are clustered in the lower center, suggesting similar 

interaction patterns in these intermediate zones. R3L and R3R are positioned in the upper left quadrant, 

implying comparable interaction characteristics in peripheral areas. The clear separation along 

Dimension 1 highlights the significant impact of spatial proximity on interaction success, while 

Dimension 2 reveals subtle differences within similar zones. This distribution emphasizes the crucial 

role of spatial context in shaping human-robot interaction outcomes and suggests that robots need to 

adapt their interaction strategies based on their relative position to humans. 

 

 

 

 

 

 

 

 

Figure 11. (a) Distribution of Interaction Regions for Successful Human-Robot Interactions in a Two-

Dimensional Space. (b) Positioning of Robot Actions in Terms of Effectiveness for Successful Human-

Robot Interactions in a Two-Dimensional Space.  

Figure 11(b) (Column Point) displays the positioning of robot actions in terms of their 

effectiveness in successful human-robot interactions. Actions C and F cluster in the left quadrant, 

indicating similarity in their impact, possibly related to more complex body movements. Action E 

occupies a unique position in the upper right quadrant, suggesting a distinct effect on interactions. 

Actions A and D are separated along Dimension 2 but share similar positions on Dimension 1, implying 

some shared characteristics despite differences. Action B's central location suggests a moderate, 

balanced effect across different regions. This distribution underscores the diverse impacts of various 

robot behaviors on interaction success and highlights the potential for tailoring actions to specific 

spatial contexts to optimize human-robot communication. 

This comprehensive map (Figure 12) combining insights from both regions and actions, 

offering a holistic view of successful human-robot interactions. The proximity of R1 to Actions A and 

D suggests these simpler actions are most effective in close-range interactions. R3L and R3R's 

association with Actions C and F indicates that more complex, full-body actions are more successful 

in peripheral zones. R2L and R2R's intermediate position, with some proximity to Action B, implies a 

transition zone where moderate actions are effective. Action E's central yet isolated position suggests 

a uniquely versatile action effective across multiple regions. This visualization demonstrates the 

interplay between spatial context and action complexity in determining interaction success, providing 

valuable insights for designing adaptive robot behaviors that can optimize interactions across various 

spatial configurations in public spaces. 
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Figure 12. Comprehensive Map Combining Regions and Actions for Successful Human-Robot 

Interactions, Illustrating the Interplay Between Spatial Context and Action Complexity. 

5.3 Comparison and Overall Conclusions 

The analysis of human attention shifts and successful human-robot interactions reveals 

valuable insights into the effectiveness of different robot actions across various interactive regions. 

 

Most Interactive Actions by Region: 

 

R1 (Central Field of View): For attention shifts, Actions A (head movement) and D (head movement 

with verbal behavior) were most effective. However, for interactions, Actions D and E (head movement 

with verbal behavior) were dominant. Action D, combining head movement with verbal cues, is 

consistently effective in the central region. This aligns with Hall's proxemics theory, which suggests 

that intimate and personal spaces require less exaggerated signaling for effective communication. 

 

R2L and R2R (Near Peripheral Fields of View): Action F (body rotation with head movement and 

verbal behaviors) proved the most effective for both attention shifts and interactions. Action F is highly 

effective in near peripheral regions, where more complex, dynamic actions capture attention. 

 

R3L and R3R (Peripheral Fields of View): Action C (body rotation) was most successful for 

attention shifts, while Actions C and F proved effective for interactions. In peripheral regions, more 

intricate actions like Action F (combining body rotation and verbal cues) are crucial to attract attention 

and engage users. 

 

Overall, Most Interactive Action: Action F (combining body rotation with head movement and 

verbal behavior) emerges as the most interactive action overall, showing high frequencies in both 

attention shifts and successful interactions. Action F proved especially effective in peripheral regions. 

This supports findings by Hoque et al., who noted that peripheral attention modulation requires 

deliberate, high-magnitude redirection signals. The broader motions of Action F successfully bridge 

the gap in visual attention in these outer zones. 
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Key Insights: Action F is consistently the most effective in capturing and maintaining human attention 

across various spatial regions, especially in areas where human engagement is generally more 

challenging (e.g., peripheral zones).  

Simpler actions like Action D, which involves head movement with verbal cues, are more effective in 

close proximity (R1), where interactions can be more direct and low-energy. These findings emphasize 

the need for robots to adapt their actions based on their spatial relationship with humans, utilizing 

simpler, direct actions in central zones and more complex, dynamic interactions in peripheral zones. 

 

The consistency of these results across both attention shifts and successful interactions 

strengthens our understanding that spatial proximity plays a key role in robot engagement. Future 

designs of socially interactive robots should focus on real-time, adaptive behavioral algorithms that 

consider spatial context to optimize interactions. By dynamically adjusting robot behaviors based on 

user proximity and environmental cues, we can significantly enhance human-robot interaction 

efficiency and effectiveness. 

 

6. Conclusions  

 

Our correspondence analysis of both human attention shifts, and successful human-robot 

interactions highlights the critical role of spatial positioning in determining interaction effectiveness. 

The findings indicate that robot actions should be adapted to different spatial regions to optimize 

engagement. Action F (partial body rotation with head movement and verbal behaviors) proved to be 

the most effective overall, particularly in peripheral regions (R2L, R2R, R3L, R3R), were broader 

motion increases visibility and engagement. Conversely, simpler actions like head movements and 

verbal cues (Actions A, D, and E) were most effective in the central region (R1), where close proximity 

allows for more direct interaction without requiring exaggerated movements. 

Multimodal actions (combining movement and speech) are particularly important in peripheral 

areas, where human engagement is lower, requiring more dynamic cues to capture attention. 

Meanwhile, simpler actions are preferable in central zones, where human-robot proximity allows for 

more direct, low-energy interactions. The consistency between attention shift and successful 

interaction results reinforces the idea that robots should dynamically adjust their engagement strategies 

based on spatial positioning. These insights have significant implications for the design of interactive 

robots in public spaces, suggesting that real-time behavior adaptation can enhance human-robot 

communication efficiency. 

These findings establish a foundation for developing socially interactive robots that can 

optimize their behaviors based on spatial awareness and human responsiveness. By dynamically 

adjusting actions according to user proximity, these robots can enhance both engagement effectiveness 

and naturalness in public interactions. 

Future research should explore the implementation of real-time adaptive behavioral algorithms, 

allowing robots to dynamically adjust interactions based on spatial and user-specific cues. 

Additionally, cross-cultural studies could investigate how human-robot interaction preferences vary 

across different societies, influencing engagement strategies. 
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